Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Iran Biomed J ; 28(2&3): 59-70, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38770843

RESUMEN

Despite the unconditional success achieved in the treatment and prevention of AMI over the past 40 years, mortality in this disease remains high. Hence, it is necessary to develop novel drugs with mechanism of action different from those currently used in clinical practices. Studying the molecular mechanisms involved in the cardioprotective effect of adapting to cold could contribute to the development of drugs that increase cardiac tolerance to the impact of ischemia/reperfusion. An analysis of the published data shows that the long-term human stay in the Far North contributes to the occurrence of cardiovascular diseases. At the same time, chronic and continuous exposure to cold increases tolerance of the rat heart to ischemia/ reperfusion. It has been demonstrated that the cardioprotective effect of cold adaptation depends on the activation of ROS production, stimulation of the ß2-adrenergic receptor and protein kinase C, MPT pore closing, and KATP channel.


Asunto(s)
Adaptación Fisiológica , Frío , Humanos , Animales , Sistema Cardiovascular/fisiopatología , Sistema Cardiovascular/efectos de los fármacos , Daño por Reperfusión Miocárdica/fisiopatología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión/fisiopatología , Daño por Reperfusión/metabolismo , Especies Reactivas de Oxígeno/metabolismo
2.
Life Sci ; 347: 122617, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38608835

RESUMEN

BACKGROUND: Acute myocardial infarction (AMI) is one of the main causes of death. It is quite obvious that there is an urgent need to develop new approaches for treatment of AMI. OBJECTIVE: This review analyzes data on the role of platelets in the regulation of cardiac tolerance to ischemia/reperfusion (I/R). METHODS: It was performed a search of topical articles using PubMed databases. FINDINGS: Platelets activated by a cholesterol-enriched diet, thrombin, and myocardial ischemia exacerbate I/R injury of the heart. The P2Y12 receptor antagonists, remote ischemic postconditioning and conditioning alter the properties of platelets. Platelets acquire the ability to increase cardiac tolerance to I/R. Platelet-derived growth factors (PDGFs) increase tolerance of cardiomyocytes and endothelial cells to I/R. PDGF receptors (PDGFRs) were found in cardiomyocytes and endothelial cells. PDGFs decrease infarct size and partially abrogate adverse postinfarction remodeling. Protein kinase C, phosphoinositide 3-kinase, and Akt involved in the cytoprotective effect of PDGFs. Vascular endothelial growth factor increased cardiac tolerance to I/R and alleviated adverse postinfarction remodeling. The platelet-activating factor (PAF) receptor inhibitors increase cardiac tolerance to I/R in vivo. PAF enhances cardiac tolerance to I/R in vitro. It is possible that PAF receptor inhibitors could protect the heart by blocking PAF receptor localized outside the heart. PAF protects the heart through activation of PAF receptor localized in cardiomyocytes or endothelial cells. Reactive oxygen species and kinases are involved in the cardioprotective effect of PAF. CONCLUSION: Platelets play an important role in the regulation of cardiac tolerance to I/R.


Asunto(s)
Plaquetas , Daño por Reperfusión Miocárdica , Factor de Activación Plaquetaria , Factor de Crecimiento Derivado de Plaquetas , Factor A de Crecimiento Endotelial Vascular , Humanos , Animales , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Plaquetas/metabolismo , Factor de Activación Plaquetaria/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Infarto del Miocardio/metabolismo , Infarto del Miocardio/prevención & control , Infarto del Miocardio/patología
3.
Fundam Clin Pharmacol ; 38(4): 658-673, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38423796

RESUMEN

BACKGROUND: Catecholamines and ß-adrenergic receptors (ß-ARs) play an important role in the regulation of cardiac tolerance to the impact of ischemia and reperfusion. This systematic review analyzed the molecular mechanisms of the cardioprotective activity of ß-AR ligands. METHODS: We performed an electronic search of topical articles using PubMed databases from 1966 to 2023. We cited original in vitro and in vivo studies and review articles that documented the cardioprotective properties of ß-AR agonists and antagonists. RESULTS: The infarct-reducing effect of ß-AR antagonists did not depend on a decrease in the heart rate. The target for ß-blockers is not only cardiomyocytes but also neutrophils. ß1-blockers (metoprolol, propranolol, timolol) and the selective ß2-AR agonist arformoterol have an infarct-reducing effect in coronary artery occlusion (CAO) in animals. Antagonists of ß1- and ß2-АR (metoprolol, propranolol, nadolol, carvedilol, bisoprolol, esmolol) are able to prevent reperfusion cardiac injury. All ß-AR ligands that reduced infarct size are the selective or nonselective ß1-blockers. It was hypothesized that ß1-AR blocking promotes an increase in cardiac tolerance to I/R. The activation of ß1-AR, ß2-AR, and ß3-AR can increase cardiac tolerance to I/R. The cardioprotective effect of ß-AR agonists is mediated via the activation of kinases and reactive oxygen species production. CONCLUSIONS: It is unclear why ß-blockers with the similar receptor selectivity have the infarct-sparing effect while other ß-blockers with the same selectivity do not affect infarct size. What is the molecular mechanism of the infarct-reducing effect of ß-blockers in reperfusion? Why did in early studies ß-blockers decrease the mortality rate in patients with acute myocardial infarction (AMI) and without reperfusion and in more recent studies ß-blockers had no effect on the mortality rate in patients with AMI and reperfusion? The creation of more effective ß-AR ligands depends on the answers to these questions.


Asunto(s)
Antagonistas Adrenérgicos beta , Daño por Reperfusión Miocárdica , Receptores Adrenérgicos beta , Animales , Humanos , Antagonistas Adrenérgicos beta/farmacología , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Receptores Adrenérgicos beta/metabolismo , Agonistas Adrenérgicos beta/farmacología , Cardiotónicos/farmacología
4.
Apoptosis ; 28(1-2): 55-80, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36369366

RESUMEN

Ischemia/reperfusion (I/R) of the heart leads to increased autophagic flux. Preconditioning stimulates autophagic flux by AMPK and PI3-kinase activation and mTOR inhibition. The cardioprotective effect of postconditioning is associated with activation of autophagy and increased activity of NO-synthase and AMPK. Oxidative stress stimulates autophagy in the heart during I/R. Superoxide radicals generated by NADPH-oxidase acts as a trigger for autophagy, possibly due to AMPK activation. There is reason to believe that AMPK, GSK-3ß, PINK1, JNK, hexokinase II, MEK, PKCα, and ERK kinases stimulate autophagy, while mTOR, PKCδ, Akt, and PI3-kinase can inhibit autophagy in the heart during I/R. However, there is evidence that PI3-kinase could stimulate autophagy in ischemic preconditioning of the heart. It was found that transcription factors FoxO1, FoxO3, NF-κB, HIF-1α, TFEB, and Nrf-2 enhance autophagy in the heart in I/R. Transcriptional factors STAT1, STAT3, and p53 inhibit autophagy in I/R. MicroRNAs could stimulate and inhibit autophagy in the heart in I/R. Long noncoding RNAs regulate the viability and autophagy of cardiomyocytes in hypoxia/reoxygenation (H/R). Nitric oxide (NO) donors and endogenous NO could activate autophagy of cardiomyocytes. Activation of heme oxygenase-1 promotes cardiomyocyte tolerance to H/R and enhances autophagy. Hydrogen sulfide increases cardiac tolerance to I/R and inhibits apoptosis and autophagy via mTOR and PI3-kinase activation.


Asunto(s)
Daño por Reperfusión Miocárdica , Transducción de Señal , Humanos , Proteínas Quinasas Activadas por AMP/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Apoptosis , Serina-Treonina Quinasas TOR/metabolismo , Miocitos Cardíacos/metabolismo , Isquemia , Reperfusión , Autofagia , Fosfatidilinositol 3-Quinasas
5.
Curr Cardiol Rev ; 18(5): 63-79, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35422224

RESUMEN

It has been documented that Ca2+ overload and increased production of reactive oxygen species play a significant role in reperfusion injury (RI) of cardiomyocytes. Ischemia/reperfusion induces cell death as a result of necrosis, necroptosis, apoptosis, and possibly autophagy, pyroptosis and ferroptosis. It has also been demonstrated that the NLRP3 inflammasome is involved in RI of the heart. An increase in adrenergic system activity during the restoration of coronary perfusion negatively affected cardiac resistance to RI. Toll-like receptors are involved in RI of the heart. Angiotensin II and endothelin-1 aggravated ischemic/reperfusion injury of the heart. Activation of neutrophils, monocytes, CD4+ T-cells and platelets contributes to cardiac ischemia/reperfusion injury. Our review outlines the role of these factors in reperfusion cardiac injury.


Asunto(s)
Inflamasomas , Daño por Reperfusión , Adrenérgicos/metabolismo , Angiotensina II/metabolismo , Endotelina-1/metabolismo , Humanos , Inflamasomas/metabolismo , Isquemia/metabolismo , Miocitos Cardíacos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Reperfusión
6.
Pflugers Arch ; 473(10): 1641-1655, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34245378

RESUMEN

Takotsubo syndrome (TS) is a rare but dangerous disease that can be fatal. The pathogenesis of TS is not well understood because there is no animal model of TS that fully mimics TS. It has now been documented that stress exposure (24 h) of rats induced the state which is similar TS in human: contracture damage of myofibrils, elevation of the serum creatine kinase MB level, increased 99mTc-pyrophosphate (99mTc-PYP) accumulation in the heart, QTc interval prolongation, and contractility dysfunction of the heart. Immobilization stress resulted in an increase in coronary blood flow. Emotional stress increased the serum catecholamine level. Blockade of ß1-adrenergic receptor (AR) prevented stress-induced cardiac injury (SICI). Blockade of ß2-AR aggravated stress-induced cardiac injury. Stimulation of ß2-AR increased cardiac tolerance to stress. Inhibition of ß3-AR, α1-AR had no effect on SICI. Blockade of peripheral muscarinic receptors or α2-AR aggravated SICI. Pretreatment with the selective ß1-AR antagonist atenolol attenuates stress-induced cardiac contractility dysfunction, but recovery of cardiac contractility is not complete. There is indirect evidence that circulating catecholamines play an important role in SICI. Consequently, the activation of ß1-AR plays a significant role in SICI. However, there are other receptors which are also involved in SICI and require further investigation.


Asunto(s)
Lesiones Cardíacas/metabolismo , Lesiones Cardíacas/patología , Receptores Adrenérgicos/metabolismo , Receptores Muscarínicos/metabolismo , Estrés Fisiológico , Animales , Arginina/análogos & derivados , Arginina/sangre , Corticosterona/sangre , Femenino , Masculino , Péptido Natriurético Encefálico/sangre , Tamaño de los Órganos , Ratas , Ratas Wistar , Bazo/patología
7.
Gen Physiol Biophys ; 38(3): 245-251, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31184311

RESUMEN

We have established that the continuous cold exposure (CCE, 4°C, 4 weeks) causes cold adaptation, increases systolic blood pressure, exerts infarct-limiting effect during coronary artery occlusion (45 min) and reperfusion (2 h). The CCE increases adrenal weight, heart weight and triiodothyronine (T3) level but does not change thymus, spleen weight, serum cortisol, corticosterone and thyroxin (T4) levels. The long-term (4°C, 8 h/day, 4 weeks) intermittent cold exposure (LICE) induces adaptation to the cold and increases T4 level. The brief (4°C, 1.5 h/day, 4 weeks) intermittent cold exposure (BICE) also evokes adaptation to the cold but had no effect on the blood pressure, the cardiac tolerance to ischemia/reperfusion, and does not change thymus, spleen weight, serum cortisol, corticosterone, T3 and T4 levels.


Asunto(s)
Aclimatación/fisiología , Frío , Glucocorticoides/sangre , Daño por Reperfusión/prevención & control , Hormonas Tiroideas/sangre
8.
J Cardiovasc Pharmacol Ther ; 24(5): 403-421, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31035796

RESUMEN

A humoral mechanism of cardioprotection by remote ischemic preconditioning (RIP) has been clearly demonstrated in various models of ischemia-reperfusion including upper and lower extremities, liver, and the mesenteric and renal arteries. A wide range of humoral factors for RIP have been proposed including hydrophobic peptides, opioid peptides, adenosine, prostanoids, endovanilloids, endocannabinoids, calcitonin gene-related peptide, leukotrienes, noradrenaline, adrenomedullin, erythropoietin, apolipoprotein, A-I glucagon-like peptide-1, interleukin 10, stromal cell-derived factor 1, and microRNAs. Virtually, all of the components of ischemic preconditioning's signaling pathway such as nitric oxide synthase, protein kinase C, redox signaling, PI3-kinase/Akt, glycogen synthase kinase ß, ERK1/2, mitoKATP channels, Connexin 43, and STAT were all found to play a role. The signaling pattern also depends on which remote vascular bed was subjected to ischemia and on the time between applying the rip and myocardial ischemia occurs. Because there is convincing evidence for many seemingly diverse humoral components in RIP, the most likely explanation is that the overall mechanism is complex like that seen in ischemic preconditioning where multiple components are both in series and in parallel and interact with each other. Inhibition of any single component in the right circumstance may block the resulting protective effect, and selectively activating that component may trigger the protection. Identifying the humoral factors responsible for RIP might be useful in developing drugs that confer RIP's protection in a more comfortable and reliable manner.


Asunto(s)
Precondicionamiento Isquémico , Infarto del Miocardio/prevención & control , Miocardio/metabolismo , Daño por Reperfusión/prevención & control , Transducción de Señal , Animales , Humanos , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocardio/patología , Flujo Sanguíneo Regional , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Resultado del Tratamiento
9.
Curr Cardiol Rev ; 14(4): 290-300, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29962348

RESUMEN

BACKGROUND: Redox signaling plays an important role in the lives of cells. This signaling not only becomes apparent in pathologies but is also thought to be involved in maintaining physiological homeostasis. Reactive Oxygen Species (ROS) can activate protein kinases: CaMKII, PKG, PKA, ERK, PI3K, Akt, PKC, PDK, JNK, p38. It is unclear whether it is a direct interaction of ROS with these kinases or whether their activation is a consequence of inhibition of phosphatases. ROS have a biphasic effect on the transport of Ca2+ in the cell: on one hand, they activate the sarcoplasmic reticulum Ca2+-ATPase, which can reduce the level of Ca2+ in the cell, and on the other hand, they can inactivate Ca2+-ATPase of the plasma membrane and open the cation channels TRPM2, which promote Ca2+-loading and subsequent apoptosis. ROS inhibit the enzyme PHD2, which leads to the stabilization of HIF-α and the formation of the active transcription factor HIF. CONCLUSION: Activation of STAT3 and STAT5, induced by cytokines or growth factors, may include activation of NADPH oxidase and enhancement of ROS production. Normal physiological production of ROS under the action of cytokines activates the JAK/STAT while excessive ROS production leads to their inhibition. ROS cause the activation of the transcription factor NF-κB. Physiological levels of ROS control cell proliferation and angiogenesis. ROS signaling is also involved in beneficial adaptations to survive ischemia and hypoxia, while further increases in ROS can trigger programmed cell death by the mechanism of apoptosis or autophagy. ROS formation in the myocardium can be reduced by moderate exercise.


Asunto(s)
Sistema Cardiovascular/patología , Especies Reactivas de Oxígeno/metabolismo , Humanos , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...