Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Int J Biol Macromol ; 250: 126160, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37549761

RESUMEN

The ß-lactamase BlaC conveys resistance to a broad spectrum of ß-lactam antibiotics to its host Mycobacterium tuberculosis but poorly hydrolyzes third-generation cephalosporins, such as ceftazidime. Variants of other ß-lactamases have been reported to gain activity against ceftazidime at the cost of the native activity. To understand this trade-off, laboratory evolution was performed, screening for enhanced ceftazidime activity. The variant BlaC Pro167Ser shows faster breakdown of ceftazidime, poor hydrolysis of ampicillin and only moderately reduced activity against nitrocefin. NMR spectroscopy, crystallography and kinetic assays demonstrate that the resting state of BlaC P167S exists in an open and a closed state. The open state is more active in the hydrolysis of ceftazidime. In this state the catalytic residue Glu166, generally believed to be involved in the activation of the water molecule required for deacylation, is rotated away from the active site, suggesting it plays no role in the hydrolysis of ceftazidime. In the closed state, deacylation of the BlaC-ceftazidime adduct is slow, while hydrolysis of nitrocefin, which requires the presence of Glu166 in the active site, is barely affected, providing a structural explanation for the trade-off in activities.

2.
Nucleic Acids Res ; 50(2): e10, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34734265

RESUMEN

The interplay between three-dimensional chromosome organisation and genomic processes such as replication and transcription necessitates in vivo studies of chromosome dynamics. Fluorescent organic dyes are often used for chromosome labelling in vivo. The mode of binding of these dyes to DNA cause its distortion, elongation, and partial unwinding. The structural changes induce DNA damage and interfere with the binding dynamics of chromatin-associated proteins, consequently perturbing gene expression, genome replication, and cell cycle progression. We have developed a minimally-perturbing, genetically encoded fluorescent DNA label consisting of a (photo-switchable) fluorescent protein fused to the DNA-binding domain of H-NS - a bacterial nucleoid-associated protein. We show that this DNA label, abbreviated as HI-NESS (H-NS-based indicator for nucleic acid stainings), is minimally-perturbing to genomic processes and labels chromosomes in eukaryotic cells in culture, and in zebrafish embryos with preferential binding to AT-rich chromatin.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bioensayo/métodos , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , Coloración y Etiquetado/métodos , Animales , Proteínas Bacterianas/genética , Línea Celular , Clonación Molecular , Replicación del ADN , ADN Bacteriano/química , Proteínas de Unión al ADN/genética , Colorantes Fluorescentes , Expresión Génica , Vectores Genéticos , Microscopía Fluorescente
3.
Open Biol ; 11(2): 200409, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33622102

RESUMEN

In most bacteria, cell division begins with the polymerization of the GTPase FtsZ at mid-cell, which recruits the division machinery to initiate cell constriction. In the filamentous bacterium Streptomyces, cell division is positively controlled by SsgB, which recruits FtsZ to the future septum sites and promotes Z-ring formation. Here, we show that various amino acid (aa) substitutions in the highly conserved SsgB protein result in ectopically placed septa that sever spores diagonally or along the long axis, perpendicular to the division plane. Fluorescence microscopy revealed that between 3.3% and 9.8% of the spores of strains expressing SsgB E120 variants were severed ectopically. Biochemical analysis of SsgB variant E120G revealed that its interaction with FtsZ had been maintained. The crystal structure of Streptomyces coelicolor SsgB was resolved and the key residues were mapped on the structure. Notably, residue substitutions (V115G, G118V, E120G) that are associated with septum misplacement localize in the α2-α3 loop region that links the final helix and the rest of the protein. Structural analyses and molecular simulation revealed that these residues are essential for maintaining the proper angle of helix α3. Our data suggest that besides altering FtsZ, aa substitutions in the FtsZ-recruiting protein SsgB also lead to diagonally or longitudinally divided cells in Streptomyces.


Asunto(s)
Proteínas Bacterianas/metabolismo , División Celular , Streptomyces/metabolismo , Sustitución de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Proteínas del Citoesqueleto/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Streptomyces/genética , Streptomyces/fisiología
4.
Chem Sci ; 10(31): 7456-7465, 2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31489168

RESUMEN

Designing peptides that fold and assemble in response to metal ions tests our understanding of how peptide folding and metal binding influence one another. Here, histidine residues are introduced into the hydrophobic core of a coiled-coil trimer, generating a peptide that self-assembles upon the addition of metal ions. HisAD, the resulting peptide, is unstructured in the absence of metal and folds selectively to form an α-helical construct upon complexation with Cu(ii) and Ni(ii) but not Co(ii) or Zn(ii). The structure, and metal-binding ability, of HisAD is probed using a combination of circular dichroism (CD) spectroscopy, analytical ultracentrifugation (AUC), nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography. These show the peptide is trimeric and binds to both Cu(ii) and Ni(ii) in a 1 : 1 ratio with the histidine residues involved in the metal coordination, as designed. The X-ray crystal structure of the HisAD-Cu(ii) complex reveals the trimeric HisAD peptide coordinates three Cu(ii) ions; this is the first example of such a structure. Additionally, HisAD demonstrates an unprecedented discrimination between transition metal ions, the basis of which is likely to be related to the stability of the peptide-metal complexes formed.

5.
J Biol Chem ; 293(26): 10042-10058, 2018 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-29674318

RESUMEN

α-Galactosidases (EC 3.2.1.22) are retaining glycosidases that cleave terminal α-linked galactose residues from glycoconjugate substrates. α-Galactosidases take part in the turnover of cell wall-associated galactomannans in plants and in the lysosomal degradation of glycosphingolipids in animals. Deficiency of human α-galactosidase A (α-Gal A) causes Fabry disease (FD), a heritable, X-linked lysosomal storage disorder, characterized by accumulation of globotriaosylceramide (Gb3) and globotriaosylsphingosine (lyso-Gb3). Current management of FD involves enzyme-replacement therapy (ERT). An activity-based probe (ABP) covalently labeling the catalytic nucleophile of α-Gal A has been previously designed to study α-galactosidases for use in FD therapy. Here, we report that this ABP labels proteins in Nicotiana benthamiana leaf extracts, enabling the identification and biochemical characterization of an N. benthamiana α-galactosidase we name here A1.1 (gene accession ID GJZM-1660). The transiently overexpressed and purified enzyme was a monomer lacking N-glycans and was active toward 4-methylumbelliferyl-α-d-galactopyranoside substrate (Km = 0.17 mm) over a broad pH range. A1.1 structural analysis by X-ray crystallography revealed marked similarities with human α-Gal A, even including A1.1's ability to hydrolyze Gb3 and lyso-Gb3, which are not endogenous in plants. Of note, A1.1 uptake into FD fibroblasts reduced the elevated lyso-Gb3 levels in these cells, consistent with A1.1 delivery to lysosomes as revealed by confocal microscopy. The ease of production and the features of A1.1, such as stability over a broad pH range, combined with its capacity to degrade glycosphingolipid substrates, warrant further examination of its value as a potential therapeutic agent for ERT-based FD management.


Asunto(s)
Enfermedad de Fabry/enzimología , Nicotiana/enzimología , alfa-Galactosidasa/metabolismo , Biocatálisis , Membrana Celular/metabolismo , Enfermedad de Fabry/patología , Femenino , Fibroblastos/metabolismo , Humanos , Masculino , Nicotiana/citología , alfa-Galactosidasa/genética
6.
Structure ; 24(12): 2182-2189, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27818099

RESUMEN

C1-inhibitor is a key inhibitor of the complement and contact activation systems, and mutations in the protein can cause hereditary angioedema. Through an unknown mechanism, polysaccharides can increase C1-inhibitor activity against some of its target proteases. Here we present the crystal structures of the serine protease inhibitor (serpin) domain of active C1-inhibitor by itself and in complex with dextran sulfate. Unlike previously described interactions of serpins with polysaccharides, the structures and isothermal titration calorimetry experiments together reveal that dextran sulfate binds to C1-inhibitor's F1 helix with low affinity and does not invoke an allosteric change. Furthermore, one dextran sulfate molecule can bind multiple C1-inhibitor molecules. We propose that in a C1-inhibitor/protease/polysaccharide ternary complex, negatively charged polysaccharides link C1-inhibitor's positively charged F1 helix to positively charged autolysis loops of proteases. The proposed mechanism elegantly explains previous experiments showing that polysaccharide potentiation is increased against proteases with a greater positive charge in their autolysis loop.


Asunto(s)
Proteínas Inactivadoras del Complemento 1/química , Proteínas Inactivadoras del Complemento 1/metabolismo , Sulfato de Dextran/metabolismo , Sitios de Unión , Rastreo Diferencial de Calorimetría , Proteína Inhibidora del Complemento C1 , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Unión Proteica , Estructura Secundaria de Proteína
7.
Annu Rev Pharmacol Toxicol ; 48: 143-69, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-17848136

RESUMEN

The avian virus-derived protein apoptin induces p53-independent apoptosis in a tumor-specific way. Apoptin acts as a multimeric complex and forms superstructures upon binding to DNA. In tumor cells, apoptin is phosphorylated and mainly nuclear, whereas in normal cells it is unphosphorylated, cytoplasmic, and becomes readily neutralized. Interestingly, apoptin phosphorylation, nuclear translocation, and apoptosis can transiently be induced in normal cells by cotransfecting SV40 large T oncogene, indicating that apoptin recognizes early stages of oncogenic transformation. In cancer cells, apoptin appears to recognize survival signals, which it is able to redirect into cell death impulses. Apoptin targets include DEDAF, Nur77, Nmi, Hippi, and the potential drug target APC1. Apoptin-transgenic mice and animal tumor models have revealed apoptin as a safe and efficient antitumor agent, resulting in significant tumor regression. Future antitumor therapies could use apoptin either as a therapeutic bullet or as an early sensor of druggable tumor-specific processes.


Asunto(s)
Antineoplásicos/farmacología , Proteínas de la Cápside/farmacología , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/metabolismo , Apoptosis/efectos de los fármacos , Proteínas de la Cápside/metabolismo , Transformación Celular Neoplásica/metabolismo , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...