Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 15: 1396710, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39021839

RESUMEN

Recently developed small-molecule inhibitors of the lysosomal protease dipeptidyl peptidase 1 (DPP1), also known as cathepsin C (CatC), can suppress suppurative inflammation in vivo by blocking the processing of zymogenic (pro-) forms of neutrophil serine proteases (NSPs), including neutrophil elastase, proteinase 3, and cathepsin G. DPP1 also plays an important role in activating granzyme serine proteases that are expressed by cytotoxic T lymphocytes (CTL) and natural killer (NK) cells. Therefore, it is critical to determine whether DPP1 inhibition can also cause off-target suppression of CTL/NK-cell-mediated killing of virus-infected or malignant cells. Herein, we demonstrate that the processing of human granzymes A and B, transitioning from zymogen to active proteases, is not solely dependent on DPP1. Thus, the killing of target cells by primary human CD8+ T cells, NK cells, and gene-engineered anti-CD19 CAR T cells was not blocked in vitro even after prior exposure to high concentrations of the reversible DPP1 inhibitor brensocatib. Consistent with this observation, the turnover of model granzyme A/B peptide substrates in the human CTL/NK cell lysates was not significantly reduced by brensocatib. In contrast, preincubation with brensocatib almost entirely abolished (>90%) both the cytotoxic activity of mouse CD8+ T cells and granzyme substrate turnover. Overall, our finding that the effects of DPP1 inhibition on human cytotoxic lymphocytes are attenuated in comparison to those of mice indicates that granzyme processing/activation pathways differ between mice and humans. Moreover, the in vitro data suggest that human subjects treated with reversible DPP1 inhibitors, such as brensocatib, are unlikely to experience any appreciable deficits in CTL/NK-cell-mediated immunities.

2.
Nat Struct Mol Biol ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951623

RESUMEN

The development of precise RNA-editing tools is essential for the advancement of RNA therapeutics. CRISPR (clustered regularly interspaced short palindromic repeats) PspCas13b is a programmable RNA nuclease predicted to offer superior specificity because of its 30-nucleotide spacer sequence. However, its design principles and its on-target, off-target and collateral activities remain poorly characterized. Here, we present single-base tiled screening and computational analyses that identify key design principles for potent and highly selective RNA recognition and cleavage in human cells. We show that the de novo design of spacers containing guanosine bases at precise positions can greatly enhance the catalytic activity of inefficient CRISPR RNAs (crRNAs). These validated design principles (integrated into an online tool, https://cas13target.azurewebsites.net/ ) can predict highly effective crRNAs with ~90% accuracy. Furthermore, the comprehensive spacer-target mutagenesis revealed that PspCas13b can tolerate only up to four mismatches and requires ~26-nucleotide base pairing with the target to activate its nuclease domains, highlighting its superior specificity compared to other RNA or DNA interference tools. On the basis of this targeting resolution, we predict an extremely low probability of PspCas13b having off-target effects on other cellular transcripts. Proteomic analysis validated this prediction and showed that, unlike other Cas13 orthologs, PspCas13b exhibits potent on-target activity and lacks collateral effects.

3.
Int J Hematol ; 119(5): 592-602, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38507116

RESUMEN

Familial hemophagocytic lymphohistiocytosis (FHLH) is a fatal hyperinflammation syndrome arising from the genetic defect of perforin-mediated cytolysis. Curative hematopoietic cell transplantation (HCT) is needed before development of central nervous system (CNS) disease. We studied treatment outcomes of 13 patients (FHLH2 n = 11, FHLH3 n = 2) consecutively diagnosed from 2011 to 2022 by flow cytometric screening for non-myeloablative HCT in a regional treatment network in Kyushu, Japan. One patient with a novel PRF1 variant escaped screening, but all patients with FHLH2 reached diagnosis and 8 of them received HCT until 3 and 9 months of age, respectively. The earliest HCT was conducted 65 days after birth. Three pretransplant deaths occurred in newborns with liver failure at diagnosis. Ten posttransplant patients have remained disease-free, 7 of whom had no neurological involvement. Time from first etoposide infusion to HCT was shorter in patients without CNS disease or bleeding than in patients with those factors (median [range] days: 62 [50-81] vs. 122 [89-209], p = 0.016). Six of 9 unrelated patients had a PRF1 c.1090_1091delCT variant. These results suggest that the critical times to start etoposide and HCT are within 3 months after birth and during etoposide control, respectively. Newborn screening may increase the percentage of disease-free survivors without complications.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Linfohistiocitosis Hemofagocítica , Perforina , Humanos , Linfohistiocitosis Hemofagocítica/terapia , Linfohistiocitosis Hemofagocítica/diagnóstico , Linfohistiocitosis Hemofagocítica/etiología , Japón , Lactante , Femenino , Masculino , Perforina/genética , Recién Nacido , Resultado del Tratamiento , Preescolar , Etopósido/uso terapéutico , Etopósido/administración & dosificación
4.
J Clin Immunol ; 44(1): 38, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38165470

RESUMEN

BACKGROUND: X-linked reticular pigmentary disorder (XLPDR) is a rare condition characterized by skin hyperpigmentation, ectodermal features, multiorgan inflammation, and recurrent infections. All probands identified to date share the same intronic hemizygous POLA1 hypomorphic variant (NM_001330360.2(POLA1):c.1393-354A > G) on the X chromosome. Previous studies have supported excessive type 1 interferon (IFN) inflammation and natural killer (NK) cell dysfunction in disease pathogenesis. Common null polymorphisms in filaggrin (FLG) gene underlie ichthyosis vulgaris and atopic predisposition. CASE: A 9-year-old boy born to non-consanguineous parents developed eczema with reticular skin hyperpigmentation in early infancy. He suffered recurrent chest infections with chronic cough, clubbing, and asthma, moderate allergic rhinoconjunctivitis with keratitis, multiple food allergies, and vomiting with growth failure. Imaging demonstrated bronchiectasis, while gastroscopy identified chronic eosinophilic gastroduodenitis. Interestingly, growth failure and bronchiectasis improved over time without specific treatment. METHODS: Whole-genome sequencing (WGS) using Illumina short-read sequencing was followed by both manual and orthogonal automated bioinformatic analyses for single-nucleotide variants, small insertions/deletions (indels), and larger copy number variations. NK cell cytotoxic function was assessed using 51Cr release and degranulation assays. The presence of an interferon signature was investigated using a panel of six interferon-stimulated genes (ISGs) by QPCR. RESULTS: WGS identified a de novo hemizygous intronic variant in POLA1 (NM_001330360.2(POLA1):c.1393-354A > G) giving a diagnosis of XLPDR, as well as a heterozygous nonsense FLG variant (NM_002016.2(FLG):c.441del, NP_0020.1:p.(Arg151Glyfs*43)). Compared to healthy controls, the IFN signature was elevated although the degree moderated over time with the improvement in his chest disease. NK cell functional studies showed normal cytotoxicity and degranulation. CONCLUSION: This patient had multiple atopic manifestations affecting eye, skin, chest, and gut, complicating the presentation of XLPDR. This highlights that common FLG polymorphisms should always be considered when assessing genotype-phenotype correlations of other genetic variation in patients with atopic symptoms. Additionally, while the patient exhibited an enhanced IFN signature, he does not have an NK cell defect, suggesting this may not be a constant feature of XLPDR.


Asunto(s)
Bronquiectasia , Dermatitis Atópica , Hiperpigmentación , Masculino , Humanos , Niño , Variaciones en el Número de Copia de ADN , Proteínas Filagrina , Inflamación , Interferones
5.
Eur J Med Chem ; 261: 115786, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37716187

RESUMEN

Perforin is a pore-forming protein whose normal function enables cytotoxic T and natural killer (NK) cells to kill virus-infected and transformed cells. Conversely, unwanted perforin activity can also result in auto-immune attack, graft rejection and aberrant responses to pathogens. Perforin is critical for the function of the granule exocytosis cell death pathway and is therefore a target for drug development. In this study, by screening a fragment library using NMR and surface plasmon resonance, we identified 4,4-diaminodiphenyl sulfone (dapsone) as a perforin ligand. We also found that dapsone has modest (mM) inhibitory activity of perforin lytic activity in a red blood cell lysis assay in vitro. Sequential modification of this lead fragment, guided by structural knowledge of the ligand binding site and binding pose, and supported by SPR and ligand-detected 19F NMR, enabled the design of nanomolar inhibitors of the cytolytic activity of intact NK cells against various tumour cell targets. Interestingly, the ligands we developed were largely inert with respect to direct perforin-mediated red blood cell lysis but were very potent in the context of perforin's action on delivering granzymes in the immune synapse, the context in which it functions physiologically. Our work indicates that a fragment-based, structure-guided drug discovery strategy can be used to identify novel ligands that bind perforin. Moreover, these molecules have superior physicochemical properties and solubility compared to previous generations of perforin ligands.


Asunto(s)
Dapsona , Células Asesinas Naturales , Perforina/metabolismo , Ligandos , Células Asesinas Naturales/metabolismo , Muerte Celular , Dapsona/metabolismo
6.
Blood ; 141(19): 2330-2342, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-36706356

RESUMEN

Familial forms of the severe immunoregulatory disease hemophagocytic lymphohistiocytosis (HLH) arise from biallelic mutations in the PRF1, UNC13D, STXBP2, and STX11 genes. Early and accurate diagnosis of the disease is important to determine the most appropriate treatment option, including potentially curative stem cell transplantation. The diagnosis of familial HLH (FHL) is traditionally based on finding biallelic mutations in patients with HLH symptoms and reduced natural killer (NK)-cell cytotoxicity. However, patients often have a low NK-cell count or receive immunosuppressive therapies that may render the NK-cell cytotoxicity assay unreliable. Furthermore, to fully understand the nature of a disease it is critical to directly assess the effect of mutations on cellular function; this will help to avoid instances in which carriers of innocuous mutations may be recommended for invasive procedures including transplantation. To overcome this diagnostic problem, we have developed a rapid and robust method that takes advantage of the functional equivalence of the human and mouse orthologues of PRF1, UNC13D, STX11, and STXBP2 proteins. By knocking out endogenous mouse genes in CD8+ T cells and simultaneously replacing them with their mutated human orthologues, we can accurately assess the effect of mutations on cell function. The wide dynamic range of this novel system allowed us to understand the basis of, otherwise cryptic, cases of FHL or HLH and, in some instances, to demonstrate that previously reported mutations are unlikely to cause FHL. This novel approach provides valuable new information to enable more accurate diagnosis and treatment of patients with HLH or FHL who inherit mutations of undetermined pathogenicity.


Asunto(s)
Linfohistiocitosis Hemofagocítica , Humanos , Animales , Ratones , Linfohistiocitosis Hemofagocítica/diagnóstico , Linfohistiocitosis Hemofagocítica/genética , Proteínas Citotóxicas Formadoras de Poros , Perforina/genética , Genotipo , Mutación , Fenotipo , Proteínas de la Membrana/genética , Proteínas Munc18/genética
7.
J Med Chem ; 65(21): 14305-14325, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36263926

RESUMEN

New drugs that precisely target the immune mechanisms critical for cytotoxic T lymphocyte (CTL) and natural killer (NK) cell driven pathologies are desperately needed. In this perspective, we explore the cytolytic protein perforin as a target for therapeutic intervention. Perforin plays an indispensable role in CTL/NK killing and controls a range of immune pathologies, while being encoded by a single copy gene with no redundancy of function. An immunosuppressant targeting this protein would provide the first-ever therapy focused specifically on one of the principal cell death pathways contributing to allotransplant rejection and underpinning multiple autoimmune and postinfectious diseases. No drugs that selectively block perforin-dependent cell death are currently in clinical use, so this perspective will review published novel small molecule inhibitors, concluding with in vivo proof-of-concept experiments performed in mouse models of perforin-mediated immune pathologies that provide a potential pathway toward a clinically useful therapeutic agent.


Asunto(s)
Autoinmunidad , Citotoxicidad Inmunológica , Ratones , Animales , Perforina , Inmunosupresores/farmacología , Inmunosupresores/uso terapéutico , Inmunosupresores/metabolismo , Proteínas Citotóxicas Formadoras de Poros , Glicoproteínas de Membrana/metabolismo , Linfocitos T Citotóxicos
8.
Science ; 376(6591): 377-382, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35446649

RESUMEN

Cytotoxic T lymphocytes (CTLs) and natural killer cells kill virus-infected and tumor cells through the polarized release of perforin and granzymes. Perforin is a pore-forming toxin that creates a lesion in the plasma membrane of the target cell through which granzymes enter the cytosol and initiate apoptosis. Endosomal sorting complexes required for transport (ESCRT) proteins are involved in the repair of small membrane wounds. We found that ESCRT proteins were precisely recruited in target cells to sites of CTL engagement immediately after perforin release. Inhibition of ESCRT machinery in cancer-derived cells enhanced their susceptibility to CTL-mediated killing. Thus, repair of perforin pores by ESCRT machinery limits granzyme entry into the cytosol, potentially enabling target cells to resist cytolytic attack.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte , Glicoproteínas de Membrana , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Granzimas/metabolismo , Glicoproteínas de Membrana/metabolismo , Perforina/genética , Perforina/metabolismo , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Linfocitos T Citotóxicos/metabolismo
9.
Sci Adv ; 8(6): eabk3147, 2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35148176

RESUMEN

Perforin is a pore-forming protein that facilitates rapid killing of pathogen-infected or cancerous cells by the immune system. Perforin is released from cytotoxic lymphocytes, together with proapoptotic granzymes, to bind to a target cell membrane where it oligomerizes and forms pores. The pores allow granzyme entry, which rapidly triggers the apoptotic death of the target cell. Here, we present a 4-Å resolution cryo-electron microscopy structure of the perforin pore, revealing previously unidentified inter- and intramolecular interactions stabilizing the assembly. During pore formation, the helix-turn-helix motif moves away from the bend in the central ß sheet to form an intermolecular contact. Cryo-electron tomography shows that prepores form on the membrane surface with minimal conformational changes. Our findings suggest the sequence of conformational changes underlying oligomerization and membrane insertion, and explain how several pathogenic mutations affect function.

10.
Blood ; 139(12): 1833-1849, 2022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-35081253

RESUMEN

Niemann-Pick disease type C1 (NP-C1) is a rare lysosomal storage disorder resulting from mutations in an endolysosomal cholesterol transporter, NPC1. Despite typically presenting with pronounced neurological manifestations, NP-C1 also resembles long-term congenital immunodeficiencies that arise from impairment of cytotoxic T lymphocyte (CTL) effector function. CTLs kill their targets through exocytosis of the contents of lysosome-like secretory cytotoxic granules (CGs) that store and ultimately release the essential pore-forming protein perforin and proapoptotic serine proteases, granzymes, into the synapse formed between the CTL and target cell. We discovered that NPC1 deficiency increases CG lipid burden, impairs autophagic flux through stalled trafficking of the transcription factor EB (TFEB), and dramatically reduces CTL cytotoxicity. Using a variety of immunological and cell biological techniques, we found that the cytotoxic defect arises specifically from impaired perforin pore formation. We demonstrated defects of CTL function of varying severity in patients with NP-C1, with the greatest losses of function associated with the most florid and/or earliest disease presentations. Remarkably, perforin function and CTL cytotoxicity were restored in vitro by promoting lipid clearance with therapeutic 2-hydroxypropyl-ß-cyclodextrin; however, restoration of autophagy through TFEB overexpression was ineffective. Overall, our study revealed that NPC1 deficiency has a deleterious impact on CTL (but not natural killer cell) cytotoxicity that, in the long term, may predispose patients with NP-C1 to atypical infections and impaired immune surveillance more generally.


Asunto(s)
Enfermedad de Niemann-Pick Tipo A , Enfermedad de Niemann-Pick Tipo C , Colesterol/metabolismo , Granzimas , Humanos , Enfermedad de Niemann-Pick Tipo C/metabolismo , Perforina/genética , Linfocitos T Citotóxicos/metabolismo
11.
Front Immunol ; 13: 931820, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36618385

RESUMEN

When killing through the granule exocytosis pathway, cytotoxic lymphocytes release key effector molecules into the immune synapse, perforin and granzymes, to initiate target cell killing. The pore-forming perforin is essential for the function of cytotoxic lymphocytes, as its pores disrupt the target cell membrane and allow diffusion of pro-apoptotic serine proteases, granzyme, into the target cell, where they initiate various cell death cascades. Unlike human perforin, the detection of its murine counterpart in a live cell system has been problematic due its relatively low expression level and the lack of sensitive antibodies. The lack of a suitable methodology to visualise murine perforin secretion into the synapse hinders the study of the cytotoxic lymphocyte secretory machinery in murine models of human disease. Here, we describe a novel recombinant technology, whereby a short ALFA-tag sequence has been fused with the amino-terminus of a mature murine perforin, and this allowed its detection by the highly specific FluoTag®-X2 anti-ALFA nanobodies using both Total Internal Reflection Fluorescence (TIRF) microscopy of an artificial synapse, and confocal microscopy of the physiological immune synapse with a target cell. This methodology can have broad application in the field of cytotoxic lymphocyte biology and for the many models of human disease.


Asunto(s)
Sinapsis Inmunológicas , Perforina , Linfocitos T Citotóxicos , Animales , Ratones , Muerte Celular , Membrana Celular/metabolismo , Granzimas/metabolismo , Perforina/metabolismo
12.
Faraday Discuss ; 232(0): 236-255, 2021 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-34545865

RESUMEN

Perforin is a pore forming protein used by cytotoxic T lymphocytes to remove cancerous or virus-infected cells during the immune response. During the response, the lymphocyte membrane becomes refractory to perforin function by accumulating densely ordered lipid rafts and externalizing negatively charged lipid species. The dense membrane packing lowers the capacity of perforin to bind, and the negatively charged lipids scavenge any residual protein before pore formation. Using atomic force microscopy on model membrane systems, we here provide insight into the molecular basis of perforin lipid specificity.


Asunto(s)
Lípidos , Linfocitos T Citotóxicos , Perforina , Proteínas Citotóxicas Formadoras de Poros
13.
Clin Transl Immunology ; 10(7): e1320, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34336208

RESUMEN

OBJECTIVES: A congenital loss of cytotoxic lymphocyte activity leads to a potentially fatal immune dysregulation, familial haemophagocytic lymphohistiocytosis. Until recently, this disease was uniformly associated with infants or very young children, but it appears now that the onset may be delayed for decades. As a result, some adults are being mis- or under-diagnosed because of their 'atypical' symptoms that are not recognised as immunodeficiency. The clinical picture and histopathology can overlap with those of haematologic malignancy, further complicating the diagnostic thought process. The spectrum of atypical symptoms is poorly defined, and therefore, it is important to describe these cases and the attendant immunological and cellular changes associated with familial haemophagocytic lymphohistiocytosis, in order to improve diagnosis and prevent unintended consequences of symptomatic therapies. METHODS: A 45-year-old patient presented with suspected T-cell lymphoma and was treated with combination chemotherapy (cyclophosphamide, doxorubicin, vincristine, prednisolone) supplemented with granulocyte-colony stimulating factor (G-CSF). To mobilise stem cells for autologous transplantation, the patient was then treated with high-dose G-CSF and rapidly developed haemophagocytic lymphohistiocytosis. Symptoms resolved temporarily with intensive immunosuppression with alemtuzumab and durably with a subsequent allograft. RESULTS: The patient was found to be a carrier of bi-allelic mutations in the STXBP2 protein that is essential for cytotoxic lymphocyte function, and the initial diagnosis has been revised as familial haemophagocytic lymphohistiocytosis. CONCLUSION: This case highlights the difficulty in distinguishing atypical/late-onset familial haemophagocytic lymphohistiocytosis from a malignant process as well as a possible exacerbation of the disease with G-CSF therapy.

14.
Nat Commun ; 12(1): 4270, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34257311

RESUMEN

The recent dramatic appearance of variants of concern of SARS-coronavirus-2 (SARS-CoV-2) highlights the need for innovative approaches that simultaneously suppress viral replication and circumvent viral escape from host immunity and antiviral therapeutics. Here, we employ genome-wide computational prediction and single-nucleotide resolution screening to reprogram CRISPR-Cas13b against SARS-CoV-2 genomic and subgenomic RNAs. Reprogrammed Cas13b effectors targeting accessible regions of Spike and Nucleocapsid transcripts achieved >98% silencing efficiency in virus-free models. Further, optimized and multiplexed Cas13b CRISPR RNAs (crRNAs) suppress viral replication in mammalian cells infected with replication-competent SARS-CoV-2, including the recently emerging dominant variant of concern B.1.1.7. The comprehensive mutagenesis of guide-target interaction demonstrated that single-nucleotide mismatches does not impair the capacity of a potent single crRNA to simultaneously suppress ancestral and mutated SARS-CoV-2 strains in infected mammalian cells, including the Spike D614G mutant. The specificity, efficiency and rapid deployment properties of reprogrammed Cas13b described here provide a molecular blueprint for antiviral drug development to suppress and prevent a wide range of SARS-CoV-2 mutants, and is readily adaptable to other emerging pathogenic viruses.


Asunto(s)
Mutación , SARS-CoV-2/fisiología , Replicación Viral/fisiología , Animales , Antivirales/farmacología , COVID-19/virología , Sistemas CRISPR-Cas , Chlorocebus aethiops , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Desarrollo de Medicamentos , Genoma Viral , Células HEK293 , Humanos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero , Replicación Viral/genética , Tratamiento Farmacológico de COVID-19
15.
FEBS J ; 288(6): 1734-1741, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33034118

RESUMEN

For most researchers, the time they spend as a postdoc stands out as one of challenge, but also enormous personal and professional growth. This Words of Advice is intended to guide the choice of postdoctoral position to help make the venture a success and to launch the first chapter of a happy and fulfilling professional life.


Asunto(s)
Selección de Profesión , Becas , Laboratorios/normas , Investigación Biomédica/economía , Investigación Biomédica/normas , Humanos , Laboratorios/economía , Investigadores/normas , Apoyo a la Investigación como Asunto/estadística & datos numéricos
16.
Biochim Biophys Acta Proteins Proteom ; 1868(9): 140457, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32473350

RESUMEN

We investigated the molecular basis for the remarkably different survival outcomes of mice expressing different alloforms of the pro-apoptotic serine protease granzyme B to mouse cytomegalovirus infection. Whereas C57BL/6 mice homozygous for granzyme BP (GzmBP/P) raise cytotoxic T lymphocytes that efficiently kill infected cells, those of C57BL/6 mice congenic for the outbred allele (GzmBW/W) fail to kill MCMV-infected cells and died from uncontrolled hepatocyte infection and acute liver failure. We identified subtle differences in how GzmBP and GzmBW activate cell death signalling - both alloforms predominantly activated pro-caspases directly, and cleaved pro-apoptotic Bid poorly. Consequently, neither alloform initiated mitochondrial outer membrane permeabilization, or was blocked by Bcl-2, Bcl-XL or co-expression of MCMV proteins M38.5/M41.1, which together stabilize mitochondria by sequestering Bak/Bax. Remarkably, mass spectrometric analysis of proteins from MCMV-infected primary mouse embryonic fibroblasts identified 13 cleavage sites in nine viral proteins (M18, M25, M28, M45, M80, M98, M102, M155, M164) that were cleaved >20-fold more efficiently by either GzmBP or GzmBW. Notably, M18, M28, M45, M80, M98, M102 and M164 were cleaved 20- >100-fold more efficiently by GzmBW, and so, would persist in infected cells targeted by CTLs from GzmBP/P mice. Conversely, M155 was cleaved >100-fold more efficiently by GzmBP, and would persist in cells targeted by CTLs of GzmBW/W mice. M25 was cleaved efficiently by both proteases, but at different sites. We conclude that different susceptibility to MCMV does not result from skewed endogenous cell death pathways, but rather, to as yet uncharacterised MCMV-intrinsic pathways that ultimately inhibit granzyme B-induced cell death.


Asunto(s)
Granzimas/química , Granzimas/metabolismo , Muromegalovirus/inmunología , Péptidos/metabolismo , Animales , Apoptosis , Caspasas/metabolismo , Muerte Celular , Línea Celular , Modelos Animales de Enfermedad , Femenino , Granzimas/genética , Infecciones por Herpesviridae/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Péptidos/inmunología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Especificidad por Sustrato , Linfocitos T Citotóxicos/inmunología , Proteínas Virales/inmunología , Proteínas Virales/metabolismo , Proteína bcl-X/metabolismo
18.
Vaccines (Basel) ; 8(1)2020 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-32013228

RESUMEN

Despite direct acting antivirals (DAAs) curing >95% of individuals infected with hepatitis C (HCV), in order to achieve the World Health Organization HCV Global Elimination Goals by 2030 there are still major challenges that need to be overcome. DAAs alone are unlikely to eliminate HCV in the absence of a vaccine that can limit viral transmission. Consequently, a prophylactic HCV vaccine is necessary to relieve the worldwide burden of HCV disease. DNA vaccines are a promising vaccine platform due to their commercial viability and ability to elicit robust T-cell-mediated immunity (CMI). We have developed a novel cytolytic DNA vaccine that encodes non-structural HCV proteins and a truncated mouse perforin (PRF), which is more immunogenic than the respective canonical DNA vaccine lacking PRF. Initially we assessed the ability of the HCV pNS3-PRF and pNS4/5-PRF DNA vaccines to elicit robust long-term CMI without any adverse side-effects in mice. Interferon-γ (IFN-γ) enzyme-linked immunosorbent spot (ELISpot) assay was used to evaluate CMI against NS3, NS4 and NS5B in a dose-dependent manner. This analysis showed a dose-dependent bell-curve of HCV-specific responses in vaccinated animals. We then thoroughly examined the effects associated with reactogenicity of cytolytic DNA vaccination with the multi-antigenic HCV DNA vaccine (pNS3/4/5B). Hematological, biochemical and histological studies were performed in male Sprague Dawley rats with a relative vaccine dose 10-20-fold higher than the proposed dose in Phase I clinical studies. The vaccine was well tolerated, and no toxicity was observed. Thus, the cytolytic multi-antigenic DNA vaccine is safe and elicits broad memory CMI.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...