Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Mult Scler ; : 13524585241255002, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38907632
2.
Front Neurol ; 14: 1268411, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38020654

RESUMEN

Introduction: Multiple sclerosis (MS) affects the cerebral cortex, inducing cortical atrophy and neuronal and synaptic pathology. Despite the fact that women are more susceptible to getting MS, men with MS have worse disability progression. Here, sex differences in neurodegenerative mechanisms are determined in the cerebral cortex using the MS model, chronic experimental autoimmune encephalomyelitis (EAE). Methods: Neurons from cerebral cortex tissues of chronic EAE, as well as age-matched healthy control, male and female mice underwent RNA sequencing and gene expression analyses using RiboTag technology. The morphology of mitochondria in neurons of cerebral cortex was assessed using Thy1-CFP-MitoS mice. Oxygen consumption rates were determined using mitochondrial respirometry assays from intact as well as permeabilized synaptosomes. Results: RNA sequencing of neurons in cerebral cortex during chronic EAE in C57BL/6 mice showed robust differential gene expression in male EAE compared to male healthy controls. In contrast, there were few differences in female EAE compared to female healthy controls. The most enriched differential gene expression pathways in male mice during EAE were mitochondrial dysfunction and oxidative phosphorylation. Mitochondrial morphology in neurons showed significant abnormalities in the cerebral cortex of EAE males, but not EAE females. Regarding function, synaptosomes isolated from cerebral cortex of male, but not female, EAE mice demonstrated significantly decreased oxygen consumption rates during respirometry assays. Discussion: Cortical neuronal transcriptomics, mitochondrial morphology, and functional respirometry assays in synaptosomes revealed worse neurodegeneration in male EAE mice. This is consistent with worse neurodegeneration in MS men and reveals a model and a target to develop treatments to prevent cortical neurodegeneration and mitigate disability progression in MS men.

3.
Nat Commun ; 14(1): 6044, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37758709

RESUMEN

Menopause is associated with cognitive deficits and brain atrophy, but the brain region and cell-specific mechanisms are not fully understood. Here, we identify a sex hormone by age interaction whereby loss of ovarian hormones in female mice at midlife, but not young age, induced hippocampal-dependent cognitive impairment, dorsal hippocampal atrophy, and astrocyte and microglia activation with synaptic loss. Selective deletion of estrogen receptor beta (ERß) in astrocytes, but not neurons, in gonadally intact female mice induced the same brain effects. RNA sequencing and pathway analyses of gene expression in hippocampal astrocytes from midlife female astrocyte-ERß conditional knock out (cKO) mice revealed Gluconeogenesis I and Glycolysis I as the most differentially expressed pathways. Enolase 1 gene expression was increased in hippocampi from both astrocyte-ERß cKO female mice at midlife and from postmenopausal women. Gain of function studies showed that ERß ligand treatment of midlife female mice reversed dorsal hippocampal neuropathology.


Asunto(s)
Astrocitos , Receptor beta de Estrógeno , Animales , Femenino , Ratones , Astrocitos/metabolismo , Encéfalo/metabolismo , Cognición , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Neuronas/metabolismo
4.
Lab Invest ; 103(8): 100189, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37245852

RESUMEN

In multiple sclerosis (MS), demyelination occurs in the cerebral cortex, and cerebral cortex atrophy correlates with clinical disabilities. Treatments are needed in MS to induce remyelination. Pregnancy is protective in MS. Estriol is made by the fetoplacental unit, and maternal serum estriol levels temporally align with fetal myelination. Here, we determined the effect of estriol treatment on the cerebral cortex in the preclinical model of MS, experimental autoimmune encephalomyelitis (EAE). Estriol treatment initiated after disease onset decreased cerebral cortex atrophy. Neuropathology of the cerebral cortex showed increased cholesterol synthesis proteins in oligodendrocytes, more newly formed remyelinating oligodendrocytes, and increased myelin in estriol-treated EAE mice. Estriol treatment also decreased the loss of cortical layer V pyramidal neurons and their apical dendrites and preserved synapses. Together, estriol treatment after EAE onset reduced atrophy and was neuroprotective in the cerebral cortex.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Enfermedades Neurodegenerativas , Embarazo , Femenino , Ratones , Animales , Neuroprotección , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Estriol/farmacología , Estriol/uso terapéutico , Corteza Cerebral/metabolismo , Atrofia/tratamiento farmacológico , Atrofia/patología , Ratones Endogámicos C57BL
5.
Front Mol Neurosci ; 15: 1024058, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36340686

RESUMEN

Animal models of multiple sclerosis (MS), specifically experimental autoimmune encephalomyelitis (EAE), have been used extensively to develop anti-inflammatory treatments. However, the similarity between MS and one particular EAE model does not end at inflammation. MS and chronic EAE induced in C57BL/6 mice using myelin oligodendrocyte glycoprotein (MOG) peptide 35-55 share many neuropathologies. Beyond both having white matter lesions in spinal cord, both also have widespread neuropathology in the cerebral cortex, hippocampus, thalamus, striatum, cerebellum, and retina/optic nerve. In this review, we compare neuropathologies in each of these structures in MS with chronic EAE in C57BL/6 mice, and find evidence that this EAE model is well suited to study neuroaxonal degeneration in MS.

6.
J Exp Med ; 219(12)2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36331399

RESUMEN

Given the aging population, it is important to better understand neurodegeneration in aging healthy people and to address the increasing incidence of neurodegenerative diseases. It is imperative to apply novel strategies to identify neuroprotective therapeutics. The study of sex differences in neurodegeneration can reveal new candidate treatment targets tailored for women and men. Sex chromosome effects on neurodegeneration remain understudied and represent a promising frontier for discovery. Here, we will review sex differences in neurodegeneration, focusing on the study of sex chromosome effects in the context of declining levels of sex hormones during aging.


Asunto(s)
Enfermedades Neurodegenerativas , Humanos , Femenino , Masculino , Anciano , Enfermedades Neurodegenerativas/genética , Envejecimiento , Caracteres Sexuales
7.
Ann Clin Transl Neurol ; 9(8): 1316-1320, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35770318

RESUMEN

Estrogens have neuroprotective actions depending on estrogen type, dose, and timing in both preclinical models and in women during health and disease. Serum neurofilament light chain is a putative biomarker of neurodegeneration in multiple sclerosis, aging, and other neurodegenerative diseases. Here, oral treatment with an estrogen unique to pregnancy (estriol) using an 8 mg dose to induce a mid-pregnancy blood estriol level reduced serum neurofilament light chain in nonpregnant MS women at mean age of 37 years. This is consistent with estriol-mediated protection from neuro-axonal injury and supports the use of serum neurofilament light chain as a biomarker in MS.


Asunto(s)
Esclerosis Múltiple , Adulto , Biomarcadores , Estriol/uso terapéutico , Estrógenos/uso terapéutico , Femenino , Humanos , Filamentos Intermedios , Esclerosis Múltiple/tratamiento farmacológico , Embarazo
9.
Nat Immunol ; 21(12): 1477-1478, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33139916
10.
Biol Sex Differ ; 11(1): 49, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32859258

RESUMEN

BACKGROUND: Women are more susceptible to multiple sclerosis (MS) than men by a ratio of approximately 3:1. However, being male is a risk factor for worse disability progression. Inflammatory genes have been linked to susceptibility, while neurodegeneration underlies disability progression. Thus, there appears to be a differential effect of sex on inflammation versus neurodegeneration. Further, gray matter (GM) atrophy is not uniform across the brain in MS, but instead shows regional variation. Here, we study sex differences in neurodegeneration by comparing regional GM atrophy in a cohort of men and women with MS versus their respective age- and sex-matched healthy controls. METHODS: Voxel-based morphometry (VBM), deep GM substructure volumetry, and cortical thinning were used to examine regional GM atrophy. RESULTS: VBM analysis showed deep GM atrophy in the thalamic area in both men and women with MS, whereas men had additional atrophy in the putamen as well as in localized cortical regions. Volumetry confirmed deep GM loss, while localized cortical thinning confirmed GM loss in the cerebral cortex. Further, MS males exhibited worse performance on the 9-hole peg test (9HPT) than MS females. We observed a strong correlation between thalamic volume and 9HPT performance in MS males, but not in MS females. CONCLUSION: More regional GM atrophy was observed in men with MS than women with MS, consistent with previous observations that male sex is a risk factor for worse disease progression.


Asunto(s)
Atrofia/etiología , Encefalopatías/etiología , Esclerosis Múltiple/complicaciones , Adulto , Atrofia/patología , Encefalopatías/patología , Estudios de Casos y Controles , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/patología , Factores Sexuales
11.
Ther Adv Neurol Disord ; 13: 1756286420936166, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32655689

RESUMEN

Multiple sclerosis (MS) is an autoimmune inflammatory demyelinating central nervous system disorder that is more common in women, with onset often during reproductive years. The female:male sex ratio of MS rose in several regions over the last century, suggesting a possible sex by environmental interaction increasing MS risk in women. Since many with MS are in their childbearing years, family planning, including contraceptive and disease-modifying therapy (DMT) counselling, are important aspects of MS care in women. While some DMTs are likely harmful to the developing fetus, others can be used shortly before or until pregnancy is confirmed. Overall, pregnancy decreases risk of MS relapses, whereas relapse risk may increase postpartum, although pregnancy does not appear to be harmful for long-term prognosis of MS. However, ovarian aging may contribute to disability progression in women with MS. Here, we review sex effects across the lifespan in women with MS, including the effect of sex on MS susceptibility, effects of pregnancy on MS disease activity, and management strategies around pregnancy, including risks associated with DMT use before and during pregnancy, and while breastfeeding. We also review reproductive aging and sexual dysfunction in women with MS.

12.
Mult Scler ; 26(5): 554-560, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31965884

RESUMEN

Sex differences in the incidence or severity of disease characterize many autoimmune and neurodegenerative diseases. Multiple sclerosis is a complex disease with both autoimmune and neurodegenerative aspects and is characterized by sex differences in susceptibility and progression. Research in the study sex differences is a way to capitalize on a known clinical observation, mechanistically disentangle it at the laboratory bench, then translate basic research findings back to the clinic as a novel treatment trial tailored to optimally benefit each sex. This "Bedside to Bench to Bedside" approach based on sex differences in MS will be reviewed here, first for disease susceptibility then for disability progression.


Asunto(s)
Progresión de la Enfermedad , Susceptibilidad a Enfermedades , Esclerosis Múltiple , Caracteres Sexuales , Susceptibilidad a Enfermedades/inmunología , Susceptibilidad a Enfermedades/metabolismo , Susceptibilidad a Enfermedades/patología , Femenino , Humanos , Masculino , Esclerosis Múltiple/genética , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología
13.
Mult Scler ; 26(3): 294-303, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-30843756

RESUMEN

BACKGROUND: Gray matter (GM) atrophy in brain is one of the best predictors of long-term disability in multiple sclerosis (MS), and recent findings have revealed that localized GM atrophy is associated with clinical disabilities. GM atrophy associated with each disability mapped to a distinct brain region, revealing a disability-specific atlas (DSA) of GM loss. OBJECTIVE: To uncover the mechanisms underlying the development of localized GM atrophy. METHODS: We used voxel-based morphometry (VBM) to evaluate localized GM atrophy and Clear Lipid-exchanged Acrylamide-hybridized Rigid Imaging-compatible Tissue-hYdrogel (CLARITY) to evaluate specific pathologies in mice with experimental autoimmune encephalomyelitis (EAE). RESULTS: We observed extensive GM atrophy throughout the cerebral cortex, with additional foci in the thalamus and caudoputamen, in mice with EAE compared to normal controls. Next, we generated pathology-specific atlases (PSAs), voxelwise mappings of the correlation between specific pathologies and localized GM atrophy. Interestingly, axonal damage (end-bulbs and ovoids) in the spinal cord strongly correlated with GM atrophy in the sensorimotor cortex of the brain. CONCLUSION: The combination of VBM with CLARITY in EAE can localize GM atrophy in brain that is associated with a specific pathology in spinal cord, revealing a PSA of GM loss.


Asunto(s)
Encefalomielitis Autoinmune Experimental/patología , Sustancia Gris/patología , Esclerosis Múltiple/patología , Corteza Sensoriomotora/patología , Médula Espinal/patología , Animales , Atrofia/patología , Encefalomielitis Autoinmune Experimental/diagnóstico por imagen , Femenino , Sustancia Gris/diagnóstico por imagen , Hidrogeles , Imagen por Resonancia Magnética , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/diagnóstico por imagen , Corteza Sensoriomotora/diagnóstico por imagen , Médula Espinal/diagnóstico por imagen
14.
Proc Natl Acad Sci U S A ; 116(52): 26779-26787, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31822606

RESUMEN

Many autoimmune diseases are more frequent in females than in males in humans and their mouse models, and sex differences in immune responses have been shown. Despite extensive studies of sex hormones, mechanisms underlying these sex differences remain unclear. Here, we focused on sex chromosomes using the "four core genotypes" model in C57BL/6 mice and discovered that the transcriptomes of both autoantigen and anti-CD3/CD28 stimulated CD4+ T lymphocytes showed higher expression of a cluster of 5 X genes when derived from XY as compared to XX mice. We next determined if higher expression of an X gene in XY compared to XX could be due to parent-of-origin differences in DNA methylation of the X chromosome. We found a global increase in DNA methylation on the X chromosome of paternal as compared to maternal origin. Since DNA methylation usually suppresses gene expression, this result was consistent with higher expression of X genes in XY cells because XY cells always express from the maternal X chromosome. In addition, gene expression analysis of F1 hybrid mice from CAST × FVB reciprocal crosses showed preferential gene expression from the maternal X compared to paternal X chromosome, revealing that these parent-of-origin effects are not strain-specific. SJL mice also showed a parent-of-origin effect on DNA methylation and X gene expression; however, which X genes were affected differed from those in C57BL/6. Together, this demonstrates how parent-of-origin differences in DNA methylation of the X chromosome can lead to sex differences in gene expression during immune responses.

15.
J Clin Invest ; 129(9): 3852-3863, 2019 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-31403472

RESUMEN

Multiple sclerosis (MS) is a putative T cell-mediated autoimmune disease. As with many autoimmune diseases, females are more susceptible than males. Sexual dimorphisms may be due to differences in sex hormones, sex chromosomes, or both. Regarding sex chromosome genes, a small percentage of X chromosome genes escape X inactivation and have higher expression in females (XX) compared with males (XY). Here, high-throughput gene expression analysis in CD4+ T cells showed that the top sexually dimorphic gene was Kdm6a, a histone demethylase on the X chromosome. There was higher expression of Kdm6a in females compared with males in humans and mice, and the four core genotypes (FCG) mouse model showed higher expression in XX compared with XY. Deletion of Kdm6a in CD4+ T cells ameliorated clinical disease and reduced neuropathology in the classic CD4+ T cell-mediated autoimmune disease experimental autoimmune encephalomyelitis (EAE). Global transcriptome analysis in CD4+ T cells from EAE mice with a specific deletion of Kdm6a showed upregulation of Th2 and Th1 activation pathways and downregulation of neuroinflammation signaling pathways. Together, these data demonstrate that the X escapee Kdm6a regulates multiple immune response genes, providing a mechanism for sex differences in autoimmune disease susceptibility.


Asunto(s)
Autoinmunidad/inmunología , Linfocitos T CD4-Positivos/metabolismo , Encefalomielitis Autoinmune Experimental/inmunología , Genes Ligados a X , Histona Demetilasas/genética , Animales , Linfocitos T CD4-Positivos/inmunología , Modelos Animales de Enfermedad , Femenino , Eliminación de Gen , Perfilación de la Expresión Génica , Genotipo , Histonas/metabolismo , Humanos , Receptores de Hialuranos/metabolismo , Inflamación , Masculino , Ratones , Ratones Noqueados , Esclerosis Múltiple/metabolismo , Fenotipo , Células TH1/metabolismo , Células Th2/metabolismo , Transcriptoma
16.
Sci Rep ; 9(1): 10010, 2019 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-31292459

RESUMEN

Multiple sclerosis (MS) is a neuroinflammatory multifocal disorder. Optic neuritis is common in MS and leads to visual disability. No current treatments repair this damage. Discerning gene expression changes within specific cell types in optic nerve (ON) may suggest new treatment targets for visual disability in MS. Astrocytes are pivotal regulators of neuroinflammation, playing either detrimental or beneficial roles. Here, we used RiboTag technology to characterize the astrocyte-specific transcriptome in ON in the experimental autoimmune encephalomyelitis (EAE) model of MS. RNA sequencing analysis showed the Complement Cascade and Cholesterol Biosynthesis Pathways as the most enriched and de-enriched pathways, respectively, in ON astrocytes in EAE. Expression of complement component 3 (C3) was confirmed to be increased in ON astrocytes at the protein level during EAE. A bigger increase in C3 expressing ON astrocytes was found in EAE females versus healthy females, as compared to that in EAE males versus healthy males. Also, there was worse retinal ganglion cell (RGC) and axonal loss in EAE females. Regression analyses showed a negative correlation between C3 expressing astrocytes and RGC density. This cell-specific and sex-specific investigation of the optic nerve provides targets for the development of therapeutic strategies tailored for optic neuritis in MS.


Asunto(s)
Astrocitos/metabolismo , Complemento C3/genética , Complemento C3/metabolismo , Encefalomielitis Autoinmune Experimental/genética , Perfilación de la Expresión Génica/métodos , Neuritis Óptica/genética , Animales , Estudios de Casos y Controles , Activación de Complemento , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/metabolismo , Femenino , Redes Reguladoras de Genes , Masculino , Ratones , Neuritis Óptica/metabolismo , Especificidad de Órganos , Análisis de Secuencia de ARN , Caracteres Sexuales , Regulación hacia Arriba
17.
Proc Natl Acad Sci U S A ; 116(20): 10130-10139, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31040210

RESUMEN

Regional differences in neurons, astrocytes, oligodendrocytes, and microglia exist in the brain during health, and regional differences in the transcriptome may occur for each cell type during neurodegeneration. Multiple sclerosis (MS) is multifocal, and regional differences in the astrocyte transcriptome occur in experimental autoimmune encephalomyelitis (EAE), an MS model. MS and EAE are characterized by inflammation, demyelination, and axonal damage, with minimal remyelination. Here, RNA-sequencing analysis of MS tissues from six brain regions suggested a focus on oligodendrocyte lineage cells (OLCs) in corpus callosum. Olig1-RiboTag mice were used to determine the translatome of OLCs in vivo in corpus callosum during the remyelination phase of a chronic cuprizone model with axonal damage. Cholesterol-synthesis gene pathways dominated as the top up-regulated pathways in OLCs during remyelination. In EAE, remyelination was induced with estrogen receptor-ß (ERß) ligand treatment, and up-regulation of cholesterol-synthesis gene expression was again observed in OLCs. ERß-ligand treatment in the cuprizone model further increased cholesterol synthesis gene expression and enhanced remyelination. Conditional KOs of ERß in OLCs demonstrated that increased cholesterol-synthesis gene expression in OLCs was mediated by direct effects in both models. To address this direct effect, ChIP assays showed binding of ERß to the putative estrogen-response element of a key cholesterol-synthesis gene (Fdps). As fetal OLCs are exposed in utero to high levels of estrogens in maternal blood, we discuss how remyelinating properties of estrogen treatment in adults during injury may recapitulate normal developmental myelination through targeting cholesterol homeostasis in OLCs.


Asunto(s)
Colesterol/biosíntesis , Encefalomielitis Autoinmune Experimental/metabolismo , Esclerosis Múltiple/metabolismo , Oligodendroglía/metabolismo , Remielinización , Animales , Estudios de Casos y Controles , Cuprizona , Receptor beta de Estrógeno/metabolismo , Femenino , Expresión Génica , Homeostasis , Humanos , Ratones Endogámicos C57BL , Persona de Mediana Edad , Análisis de Secuencia de ARN
19.
Neuroscience ; 395: 89-100, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30447391

RESUMEN

Cognitive impairment (CI), a debilitating and pervasive feature of multiple sclerosis (MS), is correlated with hippocampal atrophy. Findings from postmortem MS hippocampi indicate that expression of genes involved in both excitatory and inhibitory neurotransmission are altered in MS, and although deficits in excitatory neurotransmission have been reported in the MS model experimental autoimmune encephalomyelitis (EAE), the functional consequence of altered inhibitory neurotransmission remains poorly understood. In this study, we used electrophysiological and biochemical techniques to examine inhibitory neurotransmission in the CA1 region of the hippocampus in EAE. We find that tonic, GABAergic inhibition is enhanced in CA1 pyramidal cells from EAE mice. Although plasma membrane expression of the GABA transporter GAT-3 was decreased in the EAE hippocampus, an increased surface expression of α5 subunit-containing GABAA receptors appears to be primarily responsible for the increase in tonic inhibition during EAE. Enhanced tonic inhibition during EAE was associated with decreased CA1 pyramidal cell excitability and inhibition of α5 subunit-containing GABAA receptors with the negative allosteric modulator L-655,708 enhanced pyramidal cell excitability in EAE mice. Together, our results suggest that altered GABAergic neurotransmission may underlie deficits in hippocampus-dependent cognitive function in EAE and MS.


Asunto(s)
Región CA1 Hipocampal/fisiopatología , Encefalomielitis Autoinmune Experimental/fisiopatología , Inhibición Neural/fisiología , Células Piramidales/fisiología , Animales , Región CA1 Hipocampal/efectos de los fármacos , Antagonistas de Receptores de GABA-A/farmacología , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Ratones , Inhibición Neural/efectos de los fármacos , Técnicas de Placa-Clamp , Células Piramidales/efectos de los fármacos , Piridazinas/farmacología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
20.
Brain Behav ; 8(9): e01086, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30144306

RESUMEN

INTRODUCTION: Progressive gray matter (GM) atrophy is a hallmark of multiple sclerosis (MS). Cognitive impairment has been observed in 40%-70% of MS patients and has been linked to GM atrophy. In a phase 2 trial of estriol treatment in women with relapsing-remitting MS (RRMS), higher estriol levels correlated with greater improvement on the paced auditory serial addition test (PASAT) and imaging revealed sparing of localized GM in estriol-treated compared to placebo-treated patients. To better understand the significance of this GM sparing, the current study explored the relationships between the GM sparing and traditional MRI measures and clinical outcomes. METHODS: Sixty-two estriol- and forty-nine placebo-treated RRMS patients underwent clinical evaluations and brain MRI. Voxel-based morphometry (VBM) was used to evaluate voxelwise GM sparing from high-resolution T1-weighted scans. RESULTS: A region of treatment-induced sparing (TIS) was defined as the areas where GM was spared in estriol- as compared to placebo-treated groups, localized primarily within the frontal and parietal cortices. We observed that TIS volume was directly correlated with improvement on the PASAT. Next, a longitudinal cognitive disability-specific atlas (DSA) was defined by correlating voxelwise GM volumes with PASAT scores, that is, areas where less GM correlated with less improvement in PASAT scores. Finally, overlap between the TIS and the longitudinal cognitive DSA revealed a specific region of cortical GM that was preserved in estriol-treated subjects that was associated with better performance on the PASAT. CONCLUSIONS: Discovery of this region of overlap was biology driven, not based on an a priori structure of interest. It included the medial frontal cortex, an area previously implicated in problem solving and attention. These findings indicate that localized GM sparing during estriol treatment was associated with improvement in cognitive testing, suggesting a clinically relevant, disability-specific biomarker for clinical trials of candidate neuroprotective treatments in MS.


Asunto(s)
Disfunción Cognitiva/prevención & control , Estriol/farmacología , Sustancia Gris/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple/patología , Neuroprotección/efectos de los fármacos , Adulto , Atrofia , Disfunción Cognitiva/complicaciones , Disfunción Cognitiva/patología , Femenino , Sustancia Gris/patología , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/complicaciones , Pruebas Neuropsicológicas , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...