Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Dev Dyn ; 250(6): 807-821, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32864847

RESUMEN

BACKGROUND: Vertebrate eye formation requires coordinated inductive interactions between different embryonic tissue layers, first described in amphibians. A network of transcription factors and signaling molecules controls these steps, with mutations causing severe ocular, neuronal, and craniofacial defects. In eyeless mutant axolotls, eye morphogenesis arrests at the optic vesicle stage, before lens induction, and development of ventral forebrain structures is disrupted. RESULTS: We identified a 5-bp deletion in the rax (retina and anterior neural fold homeobox) gene, which was tightly linked to the recessive eyeless (e) axolotl locus in an F2 cross. This frameshift mutation, in exon 2, truncates RAX protein within the homeodomain (P154fs35X). Quantitative RNA analysis shows that mutant and wild-type rax transcripts are equally abundant in E/e embryos. Translation appears to initiate from dual start codons, via leaky ribosome scanning, a conserved feature among gnathostome RAX proteins. Previous data show rax is expressed in the optic vesicle and diencephalon, deeply conserved among metazoans, and required for eye formation in other species. CONCLUSION: The eyeless axolotl mutation is a null allele in the rax homeobox gene, with primary defects in neural ectoderm, including the retinal and hypothalamic primordia.


Asunto(s)
Ambystoma mexicanum/genética , Proteínas del Ojo/genética , Proteínas de Homeodominio/genética , Mutación , Factores de Transcripción/genética , Ambystoma mexicanum/metabolismo , Animales , Desarrollo Embrionario/genética , Proteínas del Ojo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo
2.
PLoS One ; 8(7): e67274, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23843997

RESUMEN

Very little is known about the factors that cause variation in regenerative potential within and between species. Here, we used a genetic approach to identify heritable genetic factors that explain variation in tail regenerative outgrowth. A hybrid ambystomatid salamander (Ambystoma mexicanum x A. andersoni) was crossed to an A. mexicanum and 217 offspring were induced to undergo metamorphosis and attain terrestrial adult morphology using thyroid hormone. Following metamorphosis, each salamander's tail tip was amputated and allowed to regenerate, and then amputated a second time and allowed to regenerate. Also, DNA was isolated from all individuals and genotypes were determined for 187 molecular markers distributed throughout the genome. The area of tissue that regenerated after the first and second amputations was highly positively correlated across males and females. Males presented wider tails and regenerated more tail tissue during both episodes of regeneration. Approximately 66-68% of the variation in regenerative outgrowth was explained by tail width, while tail length and genetic sex did not explain a significant amount of variation. A small effect QTL was identified as having a sex-independent effect on tail regeneration, but this QTL was only identified for the first episode of regeneration. Several molecular markers significantly affected regenerative outgrowth during both episodes of regeneration, but the effect sizes were small (<4%) and correlated with tail width. The results show that ambysex and minor effect QTL explain variation in adult tail morphology and importantly, tail width. In turn, tail width at the amputation plane largely determines the rate of regenerative outgrowth. Because amputations in this study were made at approximately the same position of the tail, our results resolve an outstanding question in regenerative biology: regenerative outgrowth positively co-varies as a function of tail width at the amputation site.


Asunto(s)
Regeneración/genética , Cola (estructura animal)/anatomía & histología , Cola (estructura animal)/fisiología , Urodelos/anatomía & histología , Urodelos/fisiología , Animales , Femenino , Marcadores Genéticos , Escala de Lod , Masculino , Sitios de Carácter Cuantitativo , Urodelos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...