Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
New Phytol ; 233(2): 948-965, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34693526

RESUMEN

Root development is a crucial process that determines the ability of plants to acquire nutrients, adapt to the substrate and withstand changing environmental conditions. Root plasticity is controlled by a plethora of transcriptional regulators that allow, in contrast to tissue development in animals, post-embryonic changes that give rise to new tissue and specialized cells. One of these changes is the accommodation in the cortex of hyperbranched hyphae of symbiotic arbuscular mycorrhizal (AM) fungi, called arbuscules. Arbuscule-containing cells undergo massive reprogramming to coordinate developmental changes with transport processes. Here we describe a novel negative regulator of arbuscule development, MIG3. MIG3 induces and interacts with SCL3, both of which modulate the activity of the central regulator DELLA, restraining cortical cell growth. As in a tug-of-war, MIG3-SCL3 antagonizes the function of the complex MIG1-DELLA, which promotes the cell expansion required for arbuscule development, adjusting cell size during the dynamic processes of the arbuscule life cycle. Our results in the legume plant Medicago truncatula advance the knowledge of root development in dicot plants, showing the existence of additional regulatory elements not present in Arabidopsis that fine-tune the activity of conserved central modules.


Asunto(s)
Medicago truncatula , Micorrizas , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/metabolismo , Micorrizas/fisiología , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Simbiosis/fisiología
2.
Methods Mol Biol ; 2146: 239-248, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32415608

RESUMEN

Host-induced gene silencing (HIGS) is a methodology that allows the downregulation of genes in organisms living in close association with a host and that are not amenable or recalcitrant to genetic modifications. This method has been particularly used for oomycetes and for filamentous fungi interacting with plants, including the fungi of the arbuscular mycorrhizal symbiosis. Here, we present a protocol developed in our laboratory to downregulate genes from the obligate symbiont Rhizophagus irregularis in symbiosis with Medicago truncatula plants.


Asunto(s)
Agrobacterium/genética , Proteínas Fúngicas/genética , Micorrizas/genética , Simbiosis/genética , Proteínas Fúngicas/aislamiento & purificación , Hongos/genética , Silenciador del Gen , Interacciones Huésped-Patógeno/genética , Micorrizas/aislamiento & purificación , Oomicetos/genética , Raíces de Plantas/microbiología , Transformación Genética/genética
3.
Sci Rep ; 9(1): 9986, 2019 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-31292467

RESUMEN

Myosin binding protein H-like (MYBPHL) is a protein associated with myofilament structures in atrial tissue. The protein exists in two isoforms that share an identical amino acid sequence except for a deletion of 23 amino acids in isoform 2. In this study, MYBPHL was found to be expressed preferentially in atrial tissue. The expression of isoform 2 was almost exclusively restricted to the atria and barely detectable in the ventricle, arteria mammaria interna, and skeletal muscle. After atrial damage induced by cryo- or radiofrequency ablation, MYBPHL was rapidly and specifically released into the peripheral circulation in a time-dependent manner. The plasma MYBPHL concentration remained substantially elevated up to 24 hours after the arrival of patients at the intensive care unit. In addition, the recorded MYBPHL values were strongly correlated with those of the established biomarker CK-MB. In contrast, an increase in MYBPHL levels was not evident in patients undergoing aortic valve replacement or transcatheter aortic valve implantation. In these patients, the values remained virtually constant and never exceeded the concentration in the plasma of healthy controls. Our findings suggest that MYBPHL can be used as a precise and reliable biomarker to specifically predict atrial myocardial damage.


Asunto(s)
Fibrilación Atrial/terapia , Proteínas del Citoesqueleto/sangre , Atrios Cardíacos/lesiones , Atrios Cardíacos/metabolismo , Empalme Alternativo , Fibrilación Atrial/sangre , Biomarcadores/sangre , Biomarcadores/metabolismo , Criocirugía/efectos adversos , Proteínas del Citoesqueleto/metabolismo , Ventrículos Cardíacos/metabolismo , Humanos , Unidades de Cuidados Intensivos , Músculo Esquelético/metabolismo , Especificidad de Órganos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ablación por Radiofrecuencia/efectos adversos , Regulación hacia Arriba
4.
Front Microbiol ; 9: 2068, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30233541

RESUMEN

Arbuscular mycorrhizal (AM) symbiosis is one of the most prominent and beneficial plant-microbe interactions that facilitates mineral nutrition and confers tolerance to biotic and abiotic stresses. AM fungi colonize the root cortex and develop specialized structures called arbuscules where the nutrient exchange takes place. Arbuscule development is a highly controlled and coordinated process requiring the involvement of many plant proteins recruited at that interface. In contrast, much less is known about the fungal proteins involved in this process. Here, we have identified an AM fungal effector that participates in this developmental step of the symbiosis. RiCRN1 is a crinkler (CRN) effector that belongs to a subfamily of secreted CRN proteins from R. irregularis. CRNs have been so far only functionally characterized in pathogenic microbes and shown to participate in processes controlling plant cell death and immunity. RiCRN1 accumulates during symbiosis establishment parallel to MtPT4, the gene coding for an arbuscule-specific phosphate transporter. Expression in Nicotiana benthamiana leaves and in Medicago truncatula roots suggest that RiCRN1 is not involved in cell death processes. RiCRN1 dimerizes and localizes to nuclear bodies, suggesting that, similar to other CRNs, it functions in the plant nucleus. Downregulation of RiCRN1 using host-induced gene silencing led to an impairment of the symbiosis in M. truncatula and to a reduction of MtPT4, while ectopic expression of RiCRN1, surprisingly, led to a drastic reduction in arbuscule size that correlated with a decrease not only in MtPT4 but also in MtBCP1, a marker for initial stages of arbuscule development. Altogether, our results suggest that a tightly regulated expression in time and space of RiCRN1 is critical for symbiosis progression and for the proper initiation of arbuscule development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...