Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Aging Cell ; 21(4): e13562, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35246937

RESUMEN

Organs age differently, causing wide heterogeneity in multimorbidity, but underlying mechanisms are largely elusive. To investigate the basis of organ-specific ageing, we utilized progeroid repair-deficient Ercc1Δ/- mouse mutants and systematically compared at the tissue, stem cell and organoid level two organs representing ageing extremes. Ercc1Δ/- intestine shows hardly any accelerated ageing. Nevertheless, we found apoptosis and reduced numbers of intestinal stem cells (ISCs), but cell loss appears compensated by over-proliferation. ISCs retain their organoid-forming capacity, but organoids perform poorly in culture, compared with WT. Conversely, liver ages dramatically, even causing early death in Ercc1-KO mice. Apoptosis, p21, polyploidization and proliferation of various (stem) cells were prominently elevated in Ercc1Δ/- liver and stem cell populations were either largely unaffected (Sox9+), or expanding (Lgr5+), but were functionally exhausted in organoid formation and development in vitro. Paradoxically, while intestine displays less ageing, repair in WT ISCs appears inferior to liver as shown by enhanced sensitivity to various DNA-damaging agents, and lower lesion removal. Our findings reveal organ-specific anti-ageing strategies. Intestine, with short lifespan limiting time for damage accumulation and repair, favours apoptosis of damaged cells relying on ISC plasticity. Liver with low renewal rates depends more on repair pathways specifically protecting the transcribed compartment of the genome to promote sustained functionality and cell preservation. As shown before, the hematopoietic system with intermediate self-renewal mainly invokes replication-linked mechanisms, apoptosis and senescence. Hence, organs employ different genome maintenance strategies, explaining heterogeneity in organ ageing and the segmental nature of DNA-repair-deficient progerias.


Asunto(s)
Envejecimiento , Daño del ADN , Envejecimiento/genética , Envejecimiento/metabolismo , Animales , Daño del ADN/genética , Reparación del ADN , Ratones , Organoides/metabolismo , Células Madre/metabolismo
2.
Cell Mol Life Sci ; 79(3): 156, 2022 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-35218437

RESUMEN

Signaling through adhesion-related molecules is important for cancer growth and metastasis and cancer cells are resistant to anoikis, a form of cell death ensued by cell detachment from the extracellular matrix. Herein, we report that detached carcinoma cells and immortalized fibroblasts display defects in TNF and CD40 ligand (CD40L)-induced MEK-ERK signaling. Cell detachment results in reduced basal levels of the MEK kinase TPL2, compromises TPL2 activation and sensitizes carcinoma cells to death-inducing receptor ligands, mimicking the synthetic lethal interactions between TPL2 inactivation and TNF or CD40L stimulation. Focal Adhesion Kinase (FAK), which is activated in focal adhesions and mediates anchorage-dependent survival signaling, was found to sustain steady state TPL2 protein levels and to be required for TNF-induced TPL2 signal transduction. We show that when FAK levels are reduced, as seen in certain types of malignancy or malignant cell populations, the formation of cIAP2:RIPK1 complexes increases, leading to reduced TPL2 expression levels by a dual mechanism: first, by the reduction in the levels of NF-κΒ1 which is required for TPL2 stability; second, by the engagement of an RelA NF-κΒ pathway that elevates interleukin-6 production, leading to activation of STAT3 and its transcriptional target SKP2 which functions as a TPL2 E3 ubiquitin ligase. These data underscore a new mode of regulation of TNF family signal transduction on the TPL2-MEK-ERK branch by adhesion-related molecules that may have important ramifications for cancer therapy.


Asunto(s)
Adhesión Celular , Quinasas Quinasa Quinasa PAM/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal , Animales , Ligando de CD40/genética , Ligando de CD40/metabolismo , Ligando de CD40/farmacología , Adhesión Celular/efectos de los fármacos , Línea Celular , Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Quinasa 1 de Adhesión Focal/genética , Quinasa 1 de Adhesión Focal/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Humanos , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Quinasas Quinasa Quinasa PAM/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , FN-kappa B/metabolismo , Proteínas de Complejo Poro Nuclear/antagonistas & inhibidores , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética , Interferencia de ARN , ARN Interferente Pequeño , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
3.
Genome Res ; 29(7): 1067-1077, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31221724

RESUMEN

Nucleotide excision repair (NER) is one of the main DNA repair pathways that protect cells against genomic damage. Disruption of this pathway can contribute to the development of cancer and accelerate aging. Mutational characteristics of NER-deficiency may reveal important diagnostic opportunities, as tumors deficient in NER are more sensitive to certain treatments. Here, we analyzed the genome-wide somatic mutational profiles of adult stem cells (ASCs) from NER-deficient Ercc1 -/Δ mice. Our results indicate that NER-deficiency increases the base substitution load twofold in liver but not in small intestinal ASCs, which coincides with the tissue-specific aging pathology observed in these mice. Moreover, NER-deficient ASCs of both tissues show an increased contribution of Signature 8 mutations, which is a mutational pattern with unknown etiology that is recurrently observed in various cancer types. The scattered genomic distribution of the base substitutions indicates that deficiency of global-genome NER (GG-NER) underlies the observed mutational consequences. In line with this, we observe increased Signature 8 mutations in a GG-NER-deficient human organoid culture, in which XPC was deleted using CRISPR-Cas9 gene-editing. Furthermore, genomes of NER-deficient breast tumors show an increased contribution of Signature 8 mutations compared with NER-proficient tumors. Elevated levels of Signature 8 mutations could therefore contribute to a predictor of NER-deficiency based on a patient's mutational profile.


Asunto(s)
Reparación del ADN/genética , Mutación , Neoplasias/genética , Células Madre Adultas , Animales , Neoplasias de la Mama/genética , Estudios de Cohortes , Análisis Mutacional de ADN , ADN de Neoplasias , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Femenino , Humanos , Ratones , Organoides , Técnicas de Cultivo de Tejidos , Secuenciación Completa del Genoma
4.
Cancer Lett ; 304(2): 80-9, 2011 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-21377269

RESUMEN

The activation of mitogen-activated protein kinases (MAPKs) is critically involved in inflammatory and oncogenic events. Tumor progression locus 2 (Tpl2), also known as COT and MAP3 kinase 8 (MAP3K8), is a serine-threonine kinase with an important physiological role in tumor necrosis factor, interleukin-1, CD40, Toll-like receptor and G protein-coupled receptor-mediated ERK MAPK signaling. Whilst the full characterization of the biochemical events that lead to the activation of Tpl2 still represent a major challenge, genetic and molecular evidence has highlighted interesting interactions with the NF-κB network. Here, we provide an overview of the multifaceted functions of Tpl2 and the molecular mechanisms that govern its regulation.


Asunto(s)
Inflamación/enzimología , Quinasas Quinasa Quinasa PAM/metabolismo , Neoplasias/enzimología , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal/fisiología , Animales , Humanos , Inflamación/inmunología , Quinasas Quinasa Quinasa PAM/inmunología , Neoplasias/inmunología , Proteínas Proto-Oncogénicas/inmunología
5.
J Biol Chem ; 283(23): 15747-53, 2008 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-18387953

RESUMEN

The small Tims chaperone hydrophobic precursors across the mitochondrial intermembrane space. Tim9 and Tim10 form the soluble TIM10 complex that binds precursors exiting from the outer membrane. Tim12 functions downstream, as the only small Tim peripherally attached on the inner membrane. We show that Tim12 has an intrinsic affinity for inner mitochondrial membrane lipids, in contrast to the other small Tims. We find that the C-terminal end of Tim12 is essential in vivo. Its deletion crucially abolishes assembly of Tim12 in complexes with the other Tims. The N-terminal end contains targeting information and also mediates direct binding of Tim12 to the transmembrane segments of the carrier substrates. These results provide a molecular basis for the concept that the essential role of Tim12 relies on its unique assembly properties that allow this subunit to bridge the soluble and membrane-embedded translocases in the carrier import pathway.


Asunto(s)
Proteínas de la Membrana/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana Mitocondrial , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Estructura Terciaria de Proteína/fisiología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Eliminación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...