Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sol Phys ; 298(7): 88, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37457788

RESUMEN

In order to advance our understanding of the dynamic interactions between coronal mass ejections (CMEs) and the magnetized solar wind, we investigate the impact of magnetic erosion on the well-known aerodynamic drag force acting on CMEs traveling faster than the ambient solar wind. In particular, we start by generating empirical relationships for the basic physical parameters of CMEs that conserve their mass and magnetic flux. Furthermore, we examine the impact of the virtual mass on the equation of motion by studying a variable-mass system. We next implement magnetic reconnection into CME propagation, which erodes part of the CME magnetic flux and outer-shell mass, on the drag acting on CMEs, and we determine its impact on their time and speed of arrival at 1 AU. Depending on the strength of the magnetic erosion, the leading edge of the magnetic structure can reach near-Earth space up to ≈ three hours later, compared to the non-eroded case. Therefore, magnetic erosion may have a significant impact on the propagation of fast CMEs and on predictions of their arrivals at 1 AU. Finally, the modeling indicates that eroded CMEs may experience a significant mass decrease. Since such a decrease is not observed in the corona, the initiation distance of erosion may lie beyond the field-of-view of coronagraphs (i.e. 30R⊙).

2.
Sol Phys ; 298(6): 78, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37325237

RESUMEN

The middle corona, the region roughly spanning heliocentric distances from 1.5 to 6 solar radii, encompasses almost all of the influential physical transitions and processes that govern the behavior of coronal outflow into the heliosphere. The solar wind, eruptions, and flows pass through the region, and they are shaped by it. Importantly, the region also modulates inflow from above that can drive dynamic changes at lower heights in the inner corona. Consequently, the middle corona is essential for comprehensively connecting the corona to the heliosphere and for developing corresponding global models. Nonetheless, because it is challenging to observe, the region has been poorly studied by both major solar remote-sensing and in-situ missions and instruments, extending back to the Solar and Heliospheric Observatory (SOHO) era. Thanks to recent advances in instrumentation, observational processing techniques, and a realization of the importance of the region, interest in the middle corona has increased. Although the region cannot be intrinsically separated from other regions of the solar atmosphere, there has emerged a need to define the region in terms of its location and extension in the solar atmosphere, its composition, the physical transitions that it covers, and the underlying physics believed to shape the region. This article aims to define the middle corona, its physical characteristics, and give an overview of the processes that occur there.

3.
Geophys Res Lett ; 49(3): e2021GL096302, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35864851

RESUMEN

We present images of Venus from the Wide-Field Imager for Parker Solar Probe (WISPR) telescope on board the Parker Solar Probe (PSP) spacecraft, obtained during PSP's third and fourth flybys of Venus on 2020 July 11 and 2021 February 20, respectively. Thermal emission from the surface is observed on the night side, representing the shortest wavelength observations of this emission ever, the first detection of the Venusian surface by an optical telescope observing below 0.8 µm. Consistent with previous observations at 1 µm, the cooler highland areas are fainter than the surrounding lowlands. The irradiances measured by WISPR are consistent with model predictions assuming a surface temperature of T = 735 K. In addition to the thermal emission, the WISPR images also show bright nightglow emission at the limb, and we compare the WISPR intensities with previous spectroscopic measurements of the molecular oxygen nightglow lines from Venus Express.

4.
Innovation (Camb) ; 2(1): 100083, 2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-34557738

RESUMEN

As one of the most spectacular energy release events in the solar system, solar flares are generally powered by magnetic reconnection in the solar corona. As a result of the re-arrangement of magnetic field topology after the reconnection process, a series of new loop-like magnetic structures are often formed and are known as flare loops. A hot diffuse region, consisting of around 5-10 MK plasma, is also observed above the loops and is called a supra-arcade fan. Often, dark, tadpole-like structures are seen to descend through the bright supra-arcade fans. It remains unclear what role these so-called supra-arcade downflows (SADs) play in heating the flaring coronal plasma. Here we show a unique flare observation, where many SADs collide with the flare loops and strongly heat the loops to a temperature of 10-20 MK. Several of these interactions generate clear signatures of quasi-periodic enhancement in the full-Sun-integrated soft X-ray emission, providing an alternative interpretation for quasi-periodic pulsations that are commonly observed during solar and stellar flares.

5.
Geophys Res Lett ; 48(2): e2020GL090630, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33678925

RESUMEN

We develop an optimization approach to model the magnetic field configuration of magnetic clouds, based on a linear force-free formulation in three dimensions. Such a solution, dubbed the Freidberg solution, is kin to the axisymmetric Lundquist solution, but with more general "helical symmetry." The merit of our approach is demonstrated via its application to two case studies of in situ measured magnetic clouds. Both yield results of reduced χ 2 ≈ 1. Case 1 shows a winding flux rope configuration with one major polarity. Case 2 exhibits a double-helix configuration with two flux bundles winding around each other and rooted on regions of mixed polarities. This study demonstrates the three-dimensional complexity of the magnetic cloud structures.

6.
Philos Trans A Math Phys Eng Sci ; 377(2148): 20180100, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31079582

RESUMEN

Solar energetic particle (SEP) events are related to both solar flares and coronal mass ejections (CMEs) and they present energy spectra that span from a few keV up to several GeV. A wealth of observations from widely distributed spacecraft have revealed that SEPs fill very broad regions of the heliosphere, often all around the Sun. High-energy SEPs can sometimes be energetic enough to penetrate all the way down to the surface of the Earth and thus be recorded on the ground as ground level enhancements (GLEs). The conditions of the radiation environment are currently unpredictable due to an as-yet incomplete understanding of solar eruptions and their corresponding relation to SEP events. This is because the complex nature and the interplay of the injection, acceleration and transport processes undergone by the SEPs in the solar corona and the interplanetary space prevent us from establishing an accurate understanding (based on observations and modelling). In this work, we review the current status of knowledge on SEPs, focusing on GLEs and multi-spacecraft events. We extensively discuss the forecasting and nowcasting efforts of SEPs, dividing these into three categories. Finally, we report on the current open questions and the possible direction of future research efforts. This article is part of the theme issue 'Solar eruptions and their space weather impact'.

7.
Astrophys J ; 879(2): 124, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-32690977

RESUMEN

We examine the different element abundances exhibited by the closed loop solar corona and the slow speed solar wind. Both are subject to the first ionization potential (FIP) effect, the enhancement in coronal abundance of elements with FIP below 10 eV (e.g., Mg, Si, Fe) with respect to high-FIP elements (e.g., O, Ne, Ar), but with subtle differences. Intermediate elements, S, P, and C, with FIP just above 10 eV, behave as high-FIP elements in closed loops, but are fractionated more like low-FIP elements in the solar wind. On the basis of FIP fractionation by the ponderomotive force in the chromosphere, we discuss fractionation scenarios where this difference might originate. Fractionation low in the chromosphere where hydrogen is neutral enhances the S, P, and C abundances. This arises with nonresonant waves, which are ubiquitous in open field regions, and is also stronger with torsional Alfvén waves, as opposed to shear (i.e., planar) waves. We discuss the bearing these findings have on models of interchange reconnection as the source of the slow speed solar wind. The outflowing solar wind must ultimately be a mixture of the plasma in the originally open and closed fields, and the proportions and degree of mixing should depend on details of the reconnection process. We also describe novel diagnostics in ultraviolet and extreme ultraviolet spectroscopy now available with these new insights, with the prospect of investigating slow speed solar wind origins and the contribution of interchange reconnection by remote sensing.

8.
Nature ; 432(7013): 78-81, 2004 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-15525983

RESUMEN

A relationship between solar activity and aurorae on Earth was postulated long before space probes directly detected plasma propagating outwards from the Sun. Violent solar eruption events trigger interplanetary shocks that compress Earth's magnetosphere, leading to increased energetic particle precipitation into the ionosphere and subsequent auroral storms. Monitoring shocks is now part of the 'Space Weather' forecast programme aimed at predicting solar-activity-related environmental hazards. The outer planets also experience aurorae, and here we report the discovery of a strong transient polar emission on Saturn, tentatively attributed to the passage of an interplanetary shock--and ultimately to a series of solar coronal mass ejection (CME) events. We could trace the shock-triggered events from Earth, where auroral storms were recorded, to Jupiter, where the auroral activity was strongly enhanced, and to Saturn, where it activated the unusual polar source. This establishes that shocks retain their properties and their ability to trigger planetary auroral activity throughout the Solar System. Our results also reveal differences in the planetary auroral responses on the passing shock, especially in their latitudinal and local time dependences.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...