Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4871, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871738

RESUMEN

The phenomenon of mixed/heterogenous treatment responses to cancer therapies within an individual patient presents a challenging clinical scenario. Furthermore, the molecular basis of mixed intra-patient tumor responses remains unclear. Here, we show that patients with metastatic lung adenocarcinoma harbouring co-mutations of EGFR and TP53, are more likely to have mixed intra-patient tumor responses to EGFR tyrosine kinase inhibition (TKI), compared to those with an EGFR mutation alone. The combined presence of whole genome doubling (WGD) and TP53 co-mutations leads to increased genome instability and genomic copy number aberrations in genes implicated in EGFR TKI resistance. Using mouse models and an in vitro isogenic p53-mutant model system, we provide evidence that WGD provides diverse routes to drug resistance by increasing the probability of acquiring copy-number gains or losses relative to non-WGD cells. These data provide a molecular basis for mixed tumor responses to targeted therapy, within an individual patient, with implications for therapeutic strategies.


Asunto(s)
Inestabilidad Cromosómica , Receptores ErbB , Neoplasias Pulmonares , Mutación , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Animales , Ratones , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Receptores ErbB/genética , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inhibidores , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/patología , Terapia Molecular Dirigida/métodos , Femenino , Variaciones en el Número de Copia de ADN , Masculino
2.
Nat Cancer ; 5(5): 701-715, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38698089

RESUMEN

Metabolic changes contribute to cancer initiation and progression through effects on cancer cells, the tumor microenvironment and whole-body metabolism. Alterations in serine metabolism and the control of one-carbon cycles have emerged as critical for the development of many tumor types. In this Review, we focus on the mitochondrial folate cycle. We discuss recent evidence that, in addition to supporting nucleotide synthesis, mitochondrial folate metabolism also contributes to metastasis through support of antioxidant defense, mitochondrial protein synthesis and the overflow of excess formate. These observations offer potential therapeutic opportunities, including the modulation of formate metabolism through dietary interventions and the use of circulating folate cycle metabolites as biomarkers for cancer detection.


Asunto(s)
Ácido Fólico , Mitocondrias , Neoplasias , Humanos , Ácido Fólico/metabolismo , Neoplasias/metabolismo , Mitocondrias/metabolismo , Animales , Formiatos/metabolismo , Microambiente Tumoral , Metástasis de la Neoplasia
3.
Cell ; 187(7): 1589-1616, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38552609

RESUMEN

The last 50 years have witnessed extraordinary developments in understanding mechanisms of carcinogenesis, synthesized as the hallmarks of cancer. Despite this logical framework, our understanding of the molecular basis of systemic manifestations and the underlying causes of cancer-related death remains incomplete. Looking forward, elucidating how tumors interact with distant organs and how multifaceted environmental and physiological parameters impinge on tumors and their hosts will be crucial for advances in preventing and more effectively treating human cancers. In this perspective, we discuss complexities of cancer as a systemic disease, including tumor initiation and promotion, tumor micro- and immune macro-environments, aging, metabolism and obesity, cancer cachexia, circadian rhythms, nervous system interactions, tumor-related thrombosis, and the microbiome. Model systems incorporating human genetic variation will be essential to decipher the mechanistic basis of these phenomena and unravel gene-environment interactions, providing a modern synthesis of molecular oncology that is primed to prevent cancers and improve patient quality of life and cancer outcomes.


Asunto(s)
Neoplasias , Humanos , Carcinogénesis , Microbiota , Neoplasias/genética , Neoplasias/patología , Neoplasias/terapia , Obesidad/complicaciones , Calidad de Vida
5.
Mol Cell ; 84(1): 8-11, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38181764

RESUMEN

For our special issue on stress, we asked scientists about recovering from the stress of the pandemic, including some who shared insights with us in mid-2020. They discuss the importance of teamwork, reassessing priorities, and the added stresses of the cost-of-living crisis, funding cuts, and retaining scientists in academia.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Pandemias
6.
Nat Metab ; 5(12): 2148-2168, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38066114

RESUMEN

Serine is a vital amino acid in tumorigenesis. While cells can perform de novo serine synthesis, most transformed cells rely on serine uptake to meet their increased biosynthetic requirements. Solute carriers (SLCs), a family of transmembrane nutrient transport proteins, are the gatekeepers of amino acid acquisition and exchange in mammalian cells and are emerging as anticancer therapeutic targets; however, the SLCs that mediate serine transport in cancer cells remain unknown. Here we perform an arrayed RNAi screen of SLC-encoding genes while monitoring amino acid consumption and cell proliferation in colorectal cancer cells using metabolomics and high-throughput imaging. We identify SLC6A14 and SLC25A15 as major cytoplasmic and mitochondrial serine transporters, respectively. We also observe that SLC12A4 facilitates serine uptake. Dual targeting of SLC6A14 and either SLC25A15 or SLC12A4 diminishes serine uptake and growth of colorectal cancer cells in vitro and in vivo, particularly in cells with compromised de novo serine biosynthesis. Our results provide insight into the mechanisms that contribute to serine uptake and intracellular handling.


Asunto(s)
Neoplasias Colorrectales , Proteínas de Transporte de Membrana , Animales , Proteínas de Transporte de Membrana/metabolismo , Transporte Biológico , Aminoácidos/metabolismo , Serina/metabolismo , Neoplasias Colorrectales/genética , Mamíferos/metabolismo
8.
Sci Adv ; 9(36): eadh2023, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37672588

RESUMEN

Previous studies have revealed a role for proline metabolism in supporting cancer development and metastasis. In this study, we show that many cancer cells respond to loss of attachment by accumulating and secreting proline. Detached cells display reduced proliferation accompanied by a general decrease in overall protein production and de novo amino acid synthesis compared to attached cells. However, proline synthesis was maintained under detached conditions. Furthermore, while overall proline incorporation into proteins was lower in detached cells compared to other amino acids, there was an increased production of the proline-rich protein collagen. The increased excretion of proline from detached cells was also shown to be used by macrophages, an abundant and important component of the tumor microenvironment. Our study suggests that detachment induced accumulation and secretion of proline may contribute to tumor progression by supporting increased production of extracellular matrix and providing proline to surrounding stromal cells.


Asunto(s)
Neoplasias , Prolina , Aminoácidos , Transporte Biológico , Matriz Extracelular , Macrófagos
9.
Cell Rep ; 42(6): 112562, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37245210

RESUMEN

Mitochondrial 10-formyltetrahydrofolate (10-formyl-THF) is utilized by three mitochondrial enzymes to produce formate for nucleotide synthesis, NADPH for antioxidant defense, and formyl-methionine (fMet) to initiate mitochondrial mRNA translation. One of these enzymes-aldehyde dehydrogenase 1 family member 2 (ALDH1L2)-produces NADPH by catabolizing 10-formyl-THF into CO2 and THF. Using breast cancer cell lines, we show that reduction of ALDH1L2 expression increases ROS levels and the production of both formate and fMet. Both depletion of ALDH1L2 and direct exposure to formate result in enhanced cancer cell migration that is dependent on the expression of the formyl-peptide receptor (FPR). In various tumor models, increased ALDH1L2 expression lowers formate and fMet accumulation and limits metastatic capacity, while human breast cancer samples show a consistent reduction of ALDH1L2 expression in metastases. Together, our data suggest that loss of ALDH1L2 can support metastatic progression by promoting formate and fMet production, resulting in enhanced FPR-dependent signaling.


Asunto(s)
Neoplasias de la Mama , Formiatos , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH , Femenino , Humanos , Neoplasias de la Mama/metabolismo , Formiatos/metabolismo , Metionina , NADP , Especies Reactivas de Oxígeno , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo
10.
Cell Metab ; 35(7): 1132-1146.e9, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37230079

RESUMEN

Augmented T cell function leading to host damage in autoimmunity is supported by metabolic dysregulation, making targeting immunometabolism an attractive therapeutic avenue. Canagliflozin, a type 2 diabetes drug, is a sodium glucose co-transporter 2 (SGLT2) inhibitor with known off-target effects on glutamate dehydrogenase and complex I. However, the effects of SGLT2 inhibitors on human T cell function have not been extensively explored. Here, we show that canagliflozin-treated T cells are compromised in their ability to activate, proliferate, and initiate effector functions. Canagliflozin inhibits T cell receptor signaling, impacting on ERK and mTORC1 activity, concomitantly associated with reduced c-Myc. Compromised c-Myc levels were encapsulated by a failure to engage translational machinery resulting in impaired metabolic protein and solute carrier production among others. Importantly, canagliflozin-treated T cells derived from patients with autoimmune disorders impaired their effector function. Taken together, our work highlights a potential therapeutic avenue for repurposing canagliflozin as an intervention for T cell-mediated autoimmunity.


Asunto(s)
Enfermedades Autoinmunes , Diabetes Mellitus Tipo 2 , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Canagliflozina/farmacología , Canagliflozina/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Autoinmunidad , Linfocitos T , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Enfermedades Autoinmunes/tratamiento farmacológico , Hipoglucemiantes/farmacología
11.
Nature ; 615(7953): 705-711, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36922598

RESUMEN

Artificial sweeteners are used as calorie-free sugar substitutes in many food products and their consumption has increased substantially over the past years1. Although generally regarded as safe, some concerns have been raised about the long-term safety of the consumption of certain sweeteners2-5. In this study, we show that the intake of high doses of sucralose in mice results in immunomodulatory effects by limiting T cell proliferation and T cell differentiation. Mechanistically, sucralose affects the membrane order of T cells, accompanied by a reduced efficiency of T cell receptor signalling and intracellular calcium mobilization. Mice given sucralose show decreased CD8+ T cell antigen-specific responses in subcutaneous cancer models and bacterial infection models, and reduced T cell function in models of T cell-mediated autoimmunity. Overall, these findings suggest that a high intake of sucralose can dampen T cell-mediated responses, an effect that could be used in therapy to mitigate T cell-dependent autoimmune disorders.


Asunto(s)
Sacarosa , Edulcorantes , Linfocitos T , Animales , Ratones , Sacarosa/análogos & derivados , Edulcorantes/administración & dosificación , Edulcorantes/efectos adversos , Edulcorantes/farmacología , Edulcorantes/uso terapéutico , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Linfocitos T/patología , Inocuidad de los Alimentos , Señalización del Calcio/efectos de los fármacos , Receptores de Antígenos de Linfocitos T/efectos de los fármacos , Receptores de Antígenos de Linfocitos T/inmunología , Infecciones Bacterianas/inmunología , Neoplasias/inmunología , Autoinmunidad/efectos de los fármacos , Autoinmunidad/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología
12.
J Clin Invest ; 132(9)2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35316216

RESUMEN

The synthesis of serine from glucose is a key metabolic pathway supporting cellular proliferation in healthy and malignant cells. Despite this, the role that this aspect of metabolism plays in germinal center biology and pathology is not known. Here, we performed a comprehensive characterization of the role of the serine synthesis pathway in germinal center B cells and lymphomas derived from these cells. We demonstrate that upregulation of a functional serine synthesis pathway is a metabolic hallmark of B cell activation and the germinal center reaction. Inhibition of phosphoglycerate dehydrogenase (PHGDH), the first and rate-limiting enzyme in this pathway, led to defective germinal formation and impaired high-affinity antibody production. In addition, overexpression of enzymes involved in serine synthesis was a characteristic of germinal center B cell-derived lymphomas, with high levels of expression being predictive of reduced overall survival in diffuse large B cell lymphoma. Inhibition of PHGDH induced apoptosis in lymphoma cells, reducing disease progression. These findings establish PHGDH as a critical player in humoral immunity and a clinically relevant target in lymphoma.


Asunto(s)
Linfoma de Células B , Linfoma , Proliferación Celular , Centro Germinal , Humanos , Linfoma/genética , Linfoma de Células B/genética , Fosfoglicerato-Deshidrogenasa/genética , Fosfoglicerato-Deshidrogenasa/metabolismo , Serina/metabolismo
13.
Sci Signal ; 15(720): eabd9099, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35133863

RESUMEN

Genetically encoded probes are widely used to visualize cellular processes in vitro and in vivo. Although effective in cultured cells, fluorescent protein tags and reporters are suboptimal in vivo because of poor tissue penetration and high background signal. Luciferase reporters offer improved signal-to-noise ratios but require injections of luciferin that can lead to variable responses and that limit the number and timing of data points that can be gathered. Such issues in studying the critical transcription factor p53 have limited insight on its activity in vivo during development and tissue injury responses. Here, by linking the expression of the near-infrared fluorescent protein iRFP713 to a synthetic p53-responsive promoter, we generated a knock-in reporter mouse that enabled noninvasive, longitudinal analysis of p53 activity in vivo in response to various stimuli. In the developing embryo, this model revealed the timing and localization of p53 activation. In adult mice, the model monitored p53 activation in response to irradiation and paracetamol- or CCl4-induced liver regeneration. After irradiation, we observed potent and sustained activation of p53 in the liver, which limited the production of reactive oxygen species (ROS) and promoted DNA damage resolution. We propose that this new reporter may be used to further advance our understanding of various physiological and pathophysiological p53 responses.


Asunto(s)
Regeneración Hepática , Proteína p53 Supresora de Tumor , Animales , Daño del ADN , Genes Reporteros , Regeneración Hepática/genética , Ratones , Regiones Promotoras Genéticas , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
14.
Nat Rev Cancer ; 22(5): 280-297, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35102280

RESUMEN

Eukaryotic cells have developed complex systems to regulate the production and response to reactive oxygen species (ROS). Different ROS control diverse aspects of cell behaviour from signalling to death, and deregulation of ROS production and ROS limitation pathways are common features of cancer cells. ROS also function to modulate the tumour environment, affecting the various stromal cells that provide metabolic support, a blood supply and immune responses to the tumour. Although it is clear that ROS play important roles during tumorigenesis, it has been difficult to reliably predict the effect of ROS modulating therapies. We now understand that the responses to ROS are highly complex and dependent on multiple factors, including the types, levels, localization and persistence of ROS, as well as the origin, environment and stage of the tumours themselves. This increasing understanding of the complexity of ROS in malignancies will be key to unlocking the potential of ROS-targeting therapies for cancer treatment.


Asunto(s)
Neoplasias , Carcinogénesis , Transformación Celular Neoplásica , Humanos , Neoplasias/patología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
15.
Cell Death Differ ; 29(3): 514-526, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34628485

RESUMEN

The p53 transcription factor coordinates wide-ranging responses to stress that contribute to its function as a tumour suppressor. The responses to p53 induction are complex and range from mediating the elimination of stressed or damaged cells to promoting survival and repair. These activities of p53 can modulate tumour development but may also play a role in pathological responses to stress such as tissue damage and repair. Using a p53 reporter mouse, we have previously detected strong induction of p53 activity in the liver of mice treated with the hepatotoxin carbon tetrachloride (CCl4). Here, we show that p53 functions to support repair and recovery from CCl4-mediated liver damage, control reactive oxygen species (ROS) and limit the development of hepatocellular carcinoma (HCC), in part through the activation of a detoxification cytochrome P450, CYP2A5 (CYP2A6 in humans). Our work demonstrates an important role for p53-mediated redox control in facilitating the hepatic regenerative response after damage and identifies CYP2A5/CYP2A6 as a mediator of this pathway with potential prognostic utility in human HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Tetracloruro de Carbono/toxicidad , Carcinoma Hepatocelular/patología , Hígado/metabolismo , Neoplasias Hepáticas/patología , Regeneración Hepática , Ratones , Oxidación-Reducción , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
17.
Nat Commun ; 12(1): 6176, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34702840

RESUMEN

Serine is a non-essential amino acid that is critical for tumour proliferation and depletion of circulating serine results in reduced tumour growth and increased survival in various cancer models. While many cancer cells cultured in a standard tissue culture medium depend on exogenous serine for optimal growth, here we report that these cells are less sensitive to serine/glycine depletion in medium containing physiological levels of metabolites. The lower requirement for exogenous serine under these culture conditions reflects both increased de novo serine synthesis and the use of hypoxanthine (not present in the standard medium) to support purine synthesis. Limiting serine availability leads to increased uptake of extracellular hypoxanthine, sparing available serine for other pathways such as glutathione synthesis. Taken together these results improve our understanding of serine metabolism in physiologically relevant nutrient conditions and allow us to predict interventions that may enhance the therapeutic response to dietary serine/glycine limitation.


Asunto(s)
Neoplasias/metabolismo , Serina/metabolismo , Vías Biosintéticas , Línea Celular Tumoral , Proliferación Celular , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Glicina/análisis , Glicina/metabolismo , Humanos , Hipoxantina/análisis , Hipoxantina/metabolismo , Neoplasias/dietoterapia , Neoplasias/patología , Purinas/biosíntesis , Serina/análisis , Regulación hacia Arriba
19.
Genes Dev ; 35(7-8): 433-448, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33861719

RESUMEN

p53 is an important tumor suppressor, and the complexities of p53 function in regulating cancer cell behaviour are well established. Many cancers lose or express mutant forms of p53, with evidence that the type of alteration affecting p53 may differentially impact cancer development and progression. It is also clear that in addition to cell-autonomous functions, p53 status also affects the way cancer cells interact with each other. In this review, we briefly examine the impact of different p53 mutations and focus on how heterogeneity of p53 status can affect relationships between cells within a tumor.


Asunto(s)
Comunicación Celular/genética , Mutación/genética , Neoplasias/genética , Neoplasias/fisiopatología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Carcinogénesis/genética , Competencia Celular/genética , Desarrollo Embrionario/genética , Humanos
20.
Nat Commun ; 12(1): 1209, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33619282

RESUMEN

Fructose intake has increased substantially throughout the developed world and is associated with obesity, type 2 diabetes and non-alcoholic fatty liver disease. Currently, our understanding of the metabolic and mechanistic implications for immune cells, such as monocytes and macrophages, exposed to elevated levels of dietary fructose is limited. Here, we show that fructose reprograms cellular metabolic pathways to favour glutaminolysis and oxidative metabolism, which are required to support increased inflammatory cytokine production in both LPS-treated human monocytes and mouse macrophages. A fructose-dependent increase in mTORC1 activity drives translation of pro-inflammatory cytokines in response to LPS. LPS-stimulated monocytes treated with fructose rely heavily on oxidative metabolism and have reduced flexibility in response to both glycolytic and mitochondrial inhibition, suggesting glycolysis and oxidative metabolism are inextricably coupled in these cells. The physiological implications of fructose exposure are demonstrated in a model of LPS-induced systemic inflammation, with mice exposed to fructose having increased levels of circulating IL-1ß after LPS challenge. Taken together, our work underpins a pro-inflammatory role for dietary fructose in LPS-stimulated mononuclear phagocytes which occurs at the expense of metabolic flexibility.


Asunto(s)
Fructosa/farmacología , Glutamina/metabolismo , Inflamación/metabolismo , Inflamación/patología , Lipopolisacáridos/toxicidad , Ácidos/metabolismo , Animales , Ciclo del Ácido Cítrico/efectos de los fármacos , Citocinas/metabolismo , Modelos Animales de Enfermedad , Glucosa/farmacología , Glucólisis/efectos de los fármacos , Marcaje Isotópico , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Análisis de Flujos Metabólicos , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Oxidación-Reducción , Fosforilación Oxidativa/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Fenotipo , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...