Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant J ; 99(6): 1066-1079, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31074166

RESUMEN

Repetitive sequences are ubiquitous components of all eukaryotic genomes. They contribute to genome evolution and the regulation of gene transcription. However, the uncontrolled activity of repetitive sequences can negatively affect genome functions and stability. Therefore, repetitive DNAs are embedded in a highly repressive heterochromatic environment in plant cell nuclei. Here, we analyzed the sequence, composition and the epigenetic makeup of peculiar non-pericentromeric heterochromatic segments in the genome of the Australian crucifer Ballantinia antipoda. By the combination of high throughput sequencing, graph-based clustering and cytogenetics, we found that the heterochromatic segments consist of a mixture of unique sequences and an A-T-rich 174 bp satellite repeat (BaSAT1). BaSAT1 occupies about 10% of the B. antipoda nuclear genome in >250 000 copies. Unlike many other highly repetitive sequences, BaSAT1 repeats are hypomethylated; this contrasts with the normal patterns of DNA methylation in the B. antipoda genome. Detailed analysis of several copies revealed that these non-methylated BaSAT1 repeats were also devoid of heterochromatic histone H3K9me2 methylation. However, the factors decisive for the methylation status of BaSAT1 repeats remain currently unknown. In summary, we show that even highly repetitive sequences can exist as hypomethylated in the plant nuclear genome.


Asunto(s)
Metilación de ADN/genética , ADN Satélite/genética , Heterocromatina/genética , Tracheophyta/genética , Arabidopsis/genética , ADN Satélite/química , ADN Satélite/metabolismo , Epigénesis Genética , Genoma de Planta , Heterocromatina/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Histonas/química , Histonas/metabolismo , Filogenia , Tracheophyta/química , Tracheophyta/metabolismo
2.
Plant J ; 92(1): 57-67, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28696528

RESUMEN

The possibility to predict the outcome of targeted DNA double-stranded break (DSB) repair would be desirable for genome editing. Furthermore the consequences of mis-repair of potentially cell-lethal DSBs and the underlying pathways are not yet fully understood. Here we study the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-induced mutation spectra at three selected endogenous loci in Arabidopsis thaliana by deep sequencing of long amplicon libraries. Notably, we found sequence-dependent genomic features that affected the DNA repair outcome. Deletions of 1-bp to <1000-bp size and/or very short insertions, deletions >1 kbp (all due to NHEJ) and deletions combined with insertions between 5-bp to >100 bp [caused by a synthesis-dependent strand annealing (SDSA)-like mechanism] occurred most frequently at all three loci. The appearance of single-stranded annealing events depends on the presence and distance between repeats flanking the DSB. The frequency and size of insertions is increased if a sequence with high similarity to the target site was available in cis. Most deletions were linked to pre-existing microhomology. Deletion and/or insertion mutations were blunt-end ligated or via de novo generated microhomology. While most mutation types and, to some degree, their predictability are comparable with animal systems, the broad range of deletion mutations seems to be a peculiar feature of the plant A. thaliana.


Asunto(s)
Arabidopsis/genética , Sistemas CRISPR-Cas/genética , Roturas del ADN de Doble Cadena , Reparación del ADN , Inestabilidad Genómica , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Mutagénesis Sitio-Dirigida , Mutación
3.
New Phytol ; 214(4): 1712-1721, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28245065

RESUMEN

In order to prevent genome instability, cells need to be protected by a number of repair mechanisms, including DNA double-strand break (DSB) repair. The extent to which DSB repair, biased towards deletions or insertions, contributes to evolutionary diversification of genome size is still under debate. We analyzed mutation spectra in Arabidopsis thaliana and in barley (Hordeum vulgare) by PacBio sequencing of three DSB-targeted loci each, uncovering repair via gene conversion, single strand annealing (SSA) or nonhomologous end-joining (NHEJ). Furthermore, phylogenomic comparisons between A. thaliana and two related species were used to detect naturally occurring deletions during Arabidopsis evolution. Arabidopsis thaliana revealed significantly more and larger deletions after DSB repair than barley, and barley displayed more and larger insertions. Arabidopsis displayed a clear net loss of DNA after DSB repair, mainly via SSA and NHEJ. Barley revealed a very weak net loss of DNA, apparently due to less active break-end resection and easier copying of template sequences into breaks. Comparative phylogenomics revealed several footprints of SSA in the A. thaliana genome. Quantitative assessment of DNA gain and loss through DSB repair processes suggests deletion-biased DSB repair causing ongoing genome shrinking in A. thaliana, whereas genome size in barley remains nearly constant.


Asunto(s)
Arabidopsis/genética , Roturas del ADN de Doble Cadena , Reparación del ADN/fisiología , Genoma de Planta , Hordeum/genética , Capsella/genética , Reparación del ADN por Unión de Extremidades , Tamaño del Genoma , Mutación , Eliminación de Secuencia
4.
Trends Plant Sci ; 21(9): 749-757, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27427334

RESUMEN

The reason why the DNA content, chromosome number and shape, and gene content of eukaryotic genomes vary independently remains a matter of speculation. The same is true for the questions of whether there is a general tendency for increase or decrease of genome size and chromosome number and whether genome size and/or chromosome number have an adaptive value and, if so, what this value is. Here we assume that three strategies of genome evolution (shrinkage, expansion, and equilibrium) have developed to find the optimal balance between genomic stability and plasticity. We suggest various modes of DNA double-strand break (DSB) repair in combination with whole-genome duplication (WGD) and dysploid chromosome number alteration to explain the different strategies of genome size and karyotype evolution.


Asunto(s)
Genoma de Planta/genética , Inestabilidad Genómica/genética , Roturas del ADN de Doble Cadena , Evolución Molecular , Duplicación de Gen/genética
5.
Int J Genomics ; 2016: 5078796, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28097123

RESUMEN

Genome editing with engineered nucleases enabling site-directed sequence modifications bears a great potential for advanced plant breeding and crop protection. Remarkably, the RNA-guided endonuclease technology (RGEN) based on the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) is an extremely powerful and easy tool that revolutionizes both basic research and plant breeding. Here, we review the major technical advances and recent applications of the CRISPR-Cas9 system for manipulation of model and crop plant genomes. We also discuss the future prospects of this technology in molecular plant breeding.

6.
Plant J ; 84(6): 1087-99, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26485466

RESUMEN

Linear chromosomes of eukaryotic organisms invariably possess centromeres and telomeres to ensure proper chromosome segregation during nuclear divisions and to protect the chromosome ends from deterioration and fusion, respectively. While centromeric sequences may differ between species, with arrays of tandemly repeated sequences and retrotransposons being the most abundant sequence types in plant centromeres, telomeric sequences are usually highly conserved among plants and other organisms. The genome size of the carnivorous genus Genlisea (Lentibulariaceae) is highly variable. Here we study evolutionary sequence plasticity of these chromosomal domains at an intrageneric level. We show that Genlisea nigrocaulis (1C = 86 Mbp; 2n = 40) and G. hispidula (1C = 1550 Mbp; 2n = 40) differ as to their DNA composition at centromeres and telomeres. G. nigrocaulis and its close relative G. pygmaea revealed mainly 161 bp tandem repeats, while G. hispidula and its close relative G. subglabra displayed a combination of four retroelements at centromeric positions. G. nigrocaulis and G. pygmaea chromosome ends are characterized by the Arabidopsis-type telomeric repeats (TTTAGGG); G. hispidula and G. subglabra instead revealed two intermingled sequence variants (TTCAGG and TTTCAGG). These differences in centromeric and, surprisingly, also in telomeric DNA sequences, uncovered between groups with on average a > 9-fold genome size difference, emphasize the fast genome evolution within this genus. Such intrageneric evolutionary alteration of telomeric repeats with cytosine in the guanine-rich strand, not yet known for plants, might impact the epigenetic telomere chromatin modification.


Asunto(s)
Evolución Biológica , Centrómero/genética , Cromosomas de las Plantas/genética , Genoma de Planta/genética , Magnoliopsida/genética , Telómero/genética , Secuencia de Bases , Variación Genética , Genoma de Planta/fisiología , Magnoliopsida/fisiología , Datos de Secuencia Molecular , Especificidad de la Especie , Factores de Tiempo
7.
Front Plant Sci ; 6: 613, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26347752

RESUMEN

The monophyletic carnivorous genus Genlisea (Lentibulariaceae) is characterized by a bi-directional genome size evolution resulting in a 25-fold difference in nuclear DNA content. This is one of the largest ranges found within a genus so far and makes Genlisea an interesting subject to study mechanisms of genome and karyotype evolution. Genlisea nigrocaulis, with 86 Mbp one of the smallest plant genomes, and the 18-fold larger genome of G. hispidula (1,550 Mbp) possess identical chromosome numbers (2n = 40) but differ considerably in chromatin organization, nuclear and cell size. Interphase nuclei of G. nigrocaulis and of related species with small genomes, G. aurea (133 Mbp, 2n ≈ 104) and G. pygmaea (179 Mbp, 2n = 80), are hallmarked by intensely DAPI-stained chromocenters, carrying typical heterochromatin-associated methylation marks (5-methylcytosine, H3K9me2), while in G. hispidula and surprisingly also in the small genome of G. margaretae (184 Mbp, 2n = 38) the heterochromatin marks are more evenly distributed. Probes of tandem repetitive sequences together with rDNA allow the unequivocal discrimination of 13 out of 20 chromosome pairs of G. hispidula. One of the repetitive sequences labeled half of the chromosome set almost homogenously supporting an allopolyploid status of G. hispidula and its close relative G. subglabra (1,622 Mbp, 2n = 40). In G. nigrocaulis 11 chromosome pairs could be individualized using a combination of rDNA and unique genomic probes. The presented data provide a basis for future studies of karyotype evolution within the genus Genlisea.

8.
Front Microbiol ; 6: 526, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26236284

RESUMEN

In the carnivorous plant genus Genlisea a unique lobster pot trapping mechanism supplements nutrition in nutrient-poor habitats. A wide spectrum of microbes frequently occurs in Genlisea's leaf-derived traps without clear relevance for Genlisea carnivory. We sequenced the metatranscriptomes of subterrestrial traps vs. the aerial chlorophyll-containing leaves of G. nigrocaulis and of G. hispidula. Ribosomal RNA assignment revealed soil-borne microbial diversity in Genlisea traps, with 92 genera of 19 phyla present in more than one sample. Microbes from 16 of these phyla including proteobacteria, green algae, amoebozoa, fungi, ciliates and metazoans, contributed additionally short-lived mRNA to the metatranscriptome. Furthermore, transcripts of 438 members of hydrolases (e.g., proteases, phosphatases, lipases), mainly resembling those of metazoans, ciliates and green algae, were found. Compared to aerial leaves, Genlisea traps displayed a transcriptional up-regulation of endogenous NADH oxidases generating reactive oxygen species as well as of acid phosphatases for prey digestion. A leaf-vs.-trap transcriptome comparison reflects that carnivory provides inorganic P- and different forms of N-compounds (ammonium, nitrate, amino acid, oligopeptides) and implies the need to protect trap cells against oxidative stress. The analysis elucidates a complex food web inside the Genlisea traps, and suggests ecological relationships between this plant genus and its entrapped microbiome.

9.
Plant Genome ; 8(3): eplantgenome2015.04.0021, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33228273

RESUMEN

The C-value paradox remains incompletely resolved after >40 yr and is exemplified by 2,350-fold variation in genome sizes of flowering plants. The carnivorous Lentibulariaceae genus Genlisea, displaying a 25-fold range of genome sizes, is a promising subject to study mechanisms and consequences of evolutionary genome size variation. Applying genomic, phylogenetic, and cytogenetic approaches, we uncovered bidirectional genome size evolution within the genus Genlisea. The Genlisea nigrocaulis Steyerm. genome (86 Mbp) has probably shrunk by retroelement silencing and deletion-biased double-strand break (DSB) repair, from an ancestral size of 400 to 800 Mbp to become one of the smallest among flowering plants. The G. hispidula Stapf genome has expanded by whole-genome duplication (WGD) and retrotransposition to 1550 Mbp. Genlisea hispidula became allotetraploid after the split from the G. nigrocaulis clade ∼29 Ma. Genlisea pygmaea A. St.-Hil. (179 Mbp), a close relative of G. nigrocaulis, proved to be a recent (auto)tetraploid. Our analyses suggest a common ancestor of the genus Genlisea with an intermediate 1C value (400-800 Mbp) and subsequent rapid genome size evolution in opposite directions. Many abundant repeats of the larger genome are absent in the smaller, casting doubt on their functionality for the organism, while recurrent WGD seems to safeguard against the loss of essential elements in the face of genome shrinkage. We cannot identify any consistent differences in habitat or life strategy that correlate with genome size changes, raising the possibility that these changes may be selectively neutral.

10.
Front Plant Sci ; 5: 593, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25408695

RESUMEN

Epigenetic mechanisms are involved in regulation of crucial cellular processes in eukaryotic organisms. Data on the epigenetic features of plant telomeres and their epigenetic regulation were published mostly for Arabidopsis thaliana, in which the presence of interstitial telomeric repeats (ITRs) may interfere with genuine telomeres in most analyses. Here, we studied the epigenetic landscape and transcription of telomeres and ITRs in Nicotiana tabacum with long telomeres and no detectable ITRs, and in Ballantinia antipoda with large blocks of pericentromeric ITRs and relatively short telomeres. Chromatin of genuine telomeres displayed heterochromatic as well as euchromatic marks, while ITRs were just heterochromatic. Methylated cytosines were present at telomeres and ITRs, but showed a bias with more methylation toward distal telomere positions and different blocks of B. antipoda ITRs methylated to different levels. Telomeric transcripts TERRA (G-rich) and ARRET (C-rich) were identified in both plants and their levels varied among tissues with a maximum in blossoms. Plants with substantially different proportions of internally and terminally located telomeric repeats are instrumental in clarifying the chromatin status of telomeric repeats at distinct chromosome locations.

11.
Plant Cell ; 26(5): 2156-2167, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24876253

RESUMEN

DNA double-strand break (DSB) repair mechanisms differ in their requirements for a homologous repair template and in the accuracy of the result. We aimed to quantify the outcome of repair of a single targeted DSB in somatic cells of young barley (Hordeum vulgare) plants. Amplicon sequencing of three reporter constructs revealed 47 to 58% of reads as repaired via nonhomologous end-joining (NHEJ) with deletions and/or small (1 to 3 bp) insertions. Alternative NHEJ revealed 2 to 5 bp microhomology (15.7% of cases) or new replication-mediated short duplications at sealed breaks. Although deletions outweigh insertions in barley, this bias was less pronounced and deleted sequences were shorter than in Arabidopsis thaliana. Between 17 and 33% of reads likely represent restoration of the original sequence. Depending on the construct, 20 to 33% of reads arose via gene conversion (homologous recombination). Remarkably, <1 to >8% of reads apparently display synthesis-dependent strand annealing linked with NHEJ, inserting 4 to 61 bp, mostly originating from the surrounding of breakpoints. Positional coincidence of >81% of sister chromatid exchanges with target loci is unprecedented for higher eukaryotes and indicates that most repair events for staggered DSBs, at least in barley, involve the sister chromatid and occur during S or G2 phase of the cell cycle.

12.
Trends Plant Sci ; 18(11): 625-32, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23953885

RESUMEN

Transcriptional gene silencing (TGS) is an epigenetic mechanism that suppresses the activity of repetitive DNA elements via accumulation of repressive chromatin marks. We discuss natural variation in TGS, with a particular focus on cases that affect the function of protein-coding genes and lead to developmental or physiological changes. Comparison of the examples described has revealed that most natural variation is associated with genetic determinants, such as gene rearrangements, inverted repeats, and transposon insertions that triggered TGS. Recent technical advances have enabled the study of epigenetic natural variation at a whole-genome scale and revealed patterns of inter- and intraspecific epigenetic variation. Future studies exploring non-model species may reveal species-specific evolutionary adaptations at the level of chromatin configuration.


Asunto(s)
Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Variación Genética , Genoma de Planta/genética , Plantas/genética , Metilación de ADN , Silenciador del Gen , Mutación , Fenotipo , Fenómenos Fisiológicos de las Plantas , Plantas/anatomía & histología
13.
Chromosome Res ; 18(7): 841-50, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21104310

RESUMEN

We investigated by fluorescence in situ hybridization (FISH) the synteny between Brachypodium distachyon with a small genome (1C = 320 Mb) and barley with a large genome (1C = 5,100 Mb) at the chromosome level. Reciprocal genomic in situ hybridization (GISH) between B. distachyon and barley labeled mainly 45S ribosomal DNA loci, indicating that most high copy DNA is weakly conserved between both grasses. Of 13 BAC clones with inserts from different B. distachyon chromosomes, only two belonging to chromosome 1 yielded hybridization signals on a barley metaphase chromosome (on 7HS and 7HL, respectively), confirming synteny between both chromosomes. FISH experiments to characterize the synteny of single-copy loci were performed. Two of four Brachypodium sylvaticum BACs spanning a 223-kb interval homologous to the region of barley that harbors a gibberellic-acid-insensitive semi-dwarfing gene, sdw3, hybridized specifically to a central position of B. distachyon chromosome 1 short arm but not to the homologous region of the barley genome. Repeat-free sequences PCR amplified from four non-overlapping barley BACs linked to the core of Sdw3 region yielded signals at distinct positions in the middle of barley chromosome arm 2HS. Together, these results (1) confirmed the synteny between B. distachyon chromosome 1 and barley chromosomes 2H and 7H at the cytological level, (2) indicated mid-arm position for the Sdw3 locus genetically mapped at the centromere of barley chromosome 2H, and (3) proved that the sdw3 core interval of < 100 kb in B. distachyon corresponds to a megabase-sized syntenic region in barley.


Asunto(s)
Brachypodium/genética , Hordeum/genética , Sintenía , Brachypodium/ultraestructura , Cromosomas Artificiales Bacterianos , Cromosomas de las Plantas/ultraestructura , Sitios Genéticos , Hordeum/ultraestructura , Hibridación Fluorescente in Situ
14.
BMC Genomics ; 11: 301, 2010 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-20462427

RESUMEN

BACKGROUND: The high-throughput anchoring of genetic markers into contigs is required for many ongoing physical mapping projects. Multidimentional BAC pooling strategies for PCR-based screening of large insert libraries is a widely used alternative to high density filter hybridisation of bacterial colonies. To date, concerns over reliability have led most if not all groups engaged in high throughput physical mapping projects to favour BAC DNA isolation prior to amplification by conventional PCR. RESULTS: Here, we report the first combined use of Multiplex Tandem PCR (MT-PCR) and High Resolution Melt (HRM) analysis on bacterial stocks of BAC library superpools as a means of rapidly anchoring markers to BAC colonies and thereby to integrate genetic and physical maps. We exemplify the approach using a BAC library of the model plant Arabidopsis thaliana. Super pools of twenty five 384-well plates and two-dimension matrix pools of the BAC library were prepared for marker screening. The entire procedure only requires around 3 h to anchor one marker. CONCLUSIONS: A pre-amplification step during MT-PCR allows high multiplexing and increases the sensitivity and reliability of subsequent HRM discrimination. This simple gel-free protocol is more reliable, faster and far less costly than conventional PCR screening. The option to screen in parallel 3 genetic markers in one MT-PCR-HRM reaction using templates from directly pooled bacterial stocks of BAC-containing bacteria further reduces time for anchoring markers in physical maps of species with large genomes.


Asunto(s)
Arabidopsis/genética , Mapeo Cromosómico/métodos , Mapeo Cromosómico/economía , Cromosomas Artificiales Bacterianos/genética , Biblioteca de Genes
15.
Funct Integr Genomics ; 10(4): 509-21, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20464438

RESUMEN

The barley mutant allele sdw3 confers a gibberellin-insensitive, semi-dwarf phenotype with potential for breeding of new semi-dwarfed barley cultivars. Towards map-based cloning, sdw3 was delimited by high-resolution genetic mapping to a 0.04 cM interval in a "cold spot" of recombination of the proximal region of the short arm of barley chromosome 2H. Extensive synteny between the barley Sdw3 locus (Hvu_sdw3) and the orthologous regions (Osa_sdw3, Sbi_sdw3, Bsy_sdw3) of three other grass species (Oryza sativa, Sorghum bicolor, Brachypodium sylvaticum) allowed for efficient synteny-based marker saturation in the target interval. Comparative sequence analysis revealed colinearity for 23 out of the 38, 35, and 29 genes identified in Brachypodium, rice, and Sorghum, respectively. Markers co-segregating with Hvu_sdw3 were generated from two of these genes. Initial attempts at chromosome walking in barley were performed with seven orthologous gene probes which were delimiting physical distances of 223, 123, and 127 kb in Brachypodium, rice, and Sorghum, respectively. Six non-overlapping small bacterial artificial chromosome (BAC) clone contigs (cumulative length of 670 kb) were obtained, which indicated a considerably larger physical size of Hvu_sdw3. Low-pass sequencing of selected BAC clones from these barley contigs exhibited a substantially lower gene frequency per physical distance and the presence of additional non-colinear genes. Four candidate genes for sdw3 were identified within barley BAC sequences that either co-segregated with the gene sdw3 or were located adjacent to these co-segregating genes. Identification of genic sequences in the sdw3 context provides tools for marker-assisted selection. Eventual identification of the actual gene will contribute new information for a basic understanding of the mechanisms underlying growth regulation in barley.


Asunto(s)
Mapeo Cromosómico , Genes de Plantas , Hordeum/genética , Sintenía , Secuencia de Bases , Brachypodium/genética , Cromosomas Artificiales Bacterianos , Cromosomas de las Plantas , Marcadores Genéticos , Genoma de Planta , Genotipo , Giberelinas/farmacología , Datos de Secuencia Molecular , Oryza/genética , Reguladores del Crecimiento de las Plantas/farmacología , Polimorfismo Genético , Plantones/efectos de los fármacos , Plantones/fisiología , Sorghum/genética
16.
PLoS One ; 5(2): e9089, 2010 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-20161702

RESUMEN

Physical and linkage mapping underpin efforts to sequence and characterize the genomes of eukaryotic organisms by providing a skeleton framework for whole genome assembly. Hitherto, linkage and physical "contig" maps were generated independently prior to merging. Here, we develop a new and easy method, BAC HAPPY MAPPING (BAP mapping), that utilizes BAC library pools as a HAPPY mapping panel together with an Mbp-sized DNA panel to integrate the linkage and physical mapping efforts into one pipeline. Using Arabidopsis thaliana as an exemplar, a set of 40 Sequence Tagged Site (STS) markers spanning approximately 10% of chromosome 4 were simultaneously assembled onto a BAP map compiled using both a series of BAC pools each comprising 0.7x genome coverage and dilute (0.7x genome) samples of sheared genomic DNA. The resultant BAP map overcomes the need for polymorphic loci to separate genetic loci by recombination and allows physical mapping in segments of suppressed recombination that are difficult to analyze using traditional mapping techniques. Even virtual "BAC-HAPPY-mapping" to convert BAC landing data into BAC linkage contigs is possible.


Asunto(s)
Arabidopsis/genética , Mapeo Cromosómico/métodos , Cromosomas Artificiales Bacterianos/genética , ADN de Plantas/genética , Cromosomas de las Plantas/genética , Genoma de Planta , Biblioteca Genómica , Lugares Marcados de Secuencia
17.
BMC Genomics ; 9: 518, 2008 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-18976483

RESUMEN

BACKGROUND: Barley has one of the largest and most complex genomes of all economically important food crops. The rise of new short read sequencing technologies such as Illumina/Solexa permits such large genomes to be effectively sampled at relatively low cost. Based on the corresponding sequence reads a Mathematically Defined Repeat (MDR) index can be generated to map repetitive regions in genomic sequences. RESULTS: We have generated 574 Mbp of Illumina/Solexa sequences from barley total genomic DNA, representing about 10% of a genome equivalent. From these sequences we generated an MDR index which was then used to identify and mark repetitive regions in the barley genome. Comparison of the MDR plots with expert repeat annotation drawing on the information already available for known repetitive elements revealed a significant correspondence between the two methods. MDR-based annotation allowed for the identification of dozens of novel repeat sequences, though, which were not recognised by hand-annotation. The MDR data was also used to identify gene-containing regions by masking of repetitive sequences in eight de-novo sequenced bacterial artificial chromosome (BAC) clones. For half of the identified candidate gene islands indeed gene sequences could be identified. MDR data were only of limited use, when mapped on genomic sequences from the closely related species Triticum monococcum as only a fraction of the repetitive sequences was recognised. CONCLUSION: An MDR index for barley, which was obtained by whole-genome Illumina/Solexa sequencing, proved as efficient in repeat identification as manual expert annotation. Circumventing the labour-intensive step of producing a specific repeat library for expert annotation, an MDR index provides an elegant and efficient resource for the identification of repetitive and low-copy (i.e. potentially gene-containing sequences) regions in uncharacterised genomic sequences. The restriction that a particular MDR index can not be used across species is outweighed by the low costs of Illumina/Solexa sequencing which makes any chosen genome accessible for whole-genome sequence sampling.


Asunto(s)
Genoma de Planta , Hordeum/genética , Secuencias Repetitivas de Ácidos Nucleicos , Análisis de Secuencia de ADN/métodos , Mapeo Cromosómico , Cromosomas Artificiales Bacterianos , ADN de Plantas/genética , Genes de Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...