Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 356: 141869, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38575081

RESUMEN

This study evaluates the repurposing of expired isopropanol (IPA) COVID-19 disinfectant (64% w/w) to pretreat algal biomass for enhancing methane (CH4) yield. The impact of harvesting methods (centrifugation and polymer flocculation) and microwave pretreatment on CH4 production from Scenedesmus sp. microalgal biomass were also investigated. Results show minimal impact of harvesting methods on the CH4 yield, with wet centrifuged and polymer-harvested biomass exhibiting comparable and low CH4 production at 66 and 74 L/kgvolatile solid, respectively. However, microalgae drying significantly increased CH4 yield compared to wet biomass, attributed to cell shrinkage and enhanced digestibility. Consequently, microwave and IPA pretreatment significantly enhanced CH4 production when applied to dried microalgae, yielding a 135% and 212% increase, respectively, compared to non-pretreated wet biomass. These findings underscore the advantage of using dried Scenedesmus sp. over wet biomass and highlight the synergistic effect of combining oven drying with IPA treatment to boost CH4 production whilst reducing COVID-19 waste.


Asunto(s)
Biomasa , COVID-19 , Desinfectantes , Metano , Scenedesmus , Scenedesmus/efectos de los fármacos , Desinfectantes/farmacología , Metano/metabolismo , COVID-19/prevención & control , Microalgas/efectos de los fármacos , Polímeros/química , Polímeros/farmacología , 2-Propanol/farmacología , 2-Propanol/química , SARS-CoV-2/efectos de los fármacos
2.
Sci Total Environ ; 917: 170423, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38281644

RESUMEN

This study reports a facile technique to synthesize and tune the cationic polymer, poly(3-acrylamidopropyl)trimethylammonium chloride (PAPTAC), in terms of molecular weight and surface change for harvesting three microalgae species (Scenedesmus sp., P.purpureum, and C. vulgaris). The PAPTAC polymer was synthesised by UV-induced free-radical polymerisation. Polymer tuning was demonstrated by regulating the monomer concentration (60 to 360 mg/mL) and UV power (36 and 60 W) for polymerisation. The obtained PAPTAC polymer was evaluated for harvesting three different microalgae species and compared to a commercially available polymer. The highest flocculation efficiency for Scenedesmus sp. and P. purpureum was observed at a dosage of 25 mg-polymer/g of dry biomass by using PAPTAC-90, resulting in higher flocculation efficiency than the commercial polymer. Results in this study show evidence of effective neutralisation of the negative charge surface of microalgae cells by the produced cationic PAPTAC polymer and polymer bridging for effective flocculation. The obtained PAPTAC polymer was less effective for harvesting C. vulgaris, possibly due to other factors such as cell morphology and composition of extracellular polymeric substances of at the cell membrane that may also influence harvesting performance.


Asunto(s)
Microalgas , Scenedesmus , Polímeros/metabolismo , Cationes/metabolismo , Floculación , Biomasa
3.
Chemosphere ; 343: 140255, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37741367

RESUMEN

The interplay between CO2 input and light intensity is investigated to provide new insight to optimise microalgae growth rate in photobioreactors for environmental remediation, carbon capture, and biomass production. Little is known about the combined effect of carbon metabolism and light intensity on microalgae growth. In this study, carbonated water was transferred to the microalgae culture at different rates and under different light intensities for observing the carbon composition and growth rate. Results from this study reveal opposing effects from CO2 input and light intensity on the culture solution pH and ultimately microalgae growth rate. Excessive CO2 concentration can inhibit microalgae growth due to acidification caused by CO2 dissolution. While increasing light intensity can increase pH because the carboxylation process consumes photons and transfers hydrogen ions into the cell. This reaction is catalysed by the enzyme RuBisCO, which functions optimally within a specific pH range. By balancing CO2 input and light intensity, high microalgae growth rate and carbon capture could be achieved. Under the intermittent CO2 transfer mode, at the optimal condition of 850 mg/L CO2 input and 1089 µmol/m2/s light intensity, leading to the highest microalgae growth rate and carbon fixation of 4.2 g/L as observed in this study.

4.
Bioresour Technol ; 359: 127433, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35680089

RESUMEN

The effects of microalgae harvesting methods on microalgal biomass quality were evaluated using three species namely the freshwater green alga Chlorella vulgaris, marine red alga Porphyridium purpureum and marine diatom Phaeodactylum tricornutum. Harvesting efficiencies of polyacrylamide addition, alkaline addition, and centrifugation ranged from 85 to 95, 59-92 and 100%, respectively, across these species. Morphology of the harvested cells (i.e. compromised cell walls) was significantly impacted by alkaline pH-induced flocculation for all three species. Over 50% of C. vulgaris cells were compromised with alkaline pH compared to < 10% with polyacrylamide and centrifugation. The metabolic profiles varied depending on harvesting methods. Species-specific decrease of certain metabolites was observed. These results suggest that the method of harvest can alter the metabolic profile of the biomass amongst the three harvesting methods, polyacrylamide addition showed higher harvesting efficiency with less compromised cells and higher retention of industry important biochemicals.


Asunto(s)
Chlorella vulgaris , Diatomeas , Microalgas , Resinas Acrílicas , Biomasa , Centrifugación , Floculación , Concentración de Iones de Hidrógeno , Microalgas/metabolismo
5.
Environ Sci Technol ; 56(12): 8197-8208, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35675163

RESUMEN

This work examined the chiral inversion of 2-arylpropionic acids (2-APAs) under anaerobic conditions and the associated microbial community. The anaerobic condition was simulated by two identical anaerobic digesters. Each digester was fed with the substrate containing 11 either pure (R)- or pure (S)-2-APA enantiomers. Chiral inversion was evidenced by the concentration increase of the other enantiomer in the digestate and the changes in the enantiomeric fraction between the two enantiomers. Both digesters showed similar and poor removal of 2-APAs (≤30%, except for naproxen) and diverse chiral inversion behaviors under anaerobic conditions. Four compounds exhibited (S → R) unidirectional inversion [flurbiprofen, ketoprofen, naproxen, and 2-(4-tert-butylphenyl)propionic acid], and the remaining seven compounds showed bidirectional inversion. Several aerobic and facultative anaerobic bacterial genera (Candidatus Microthrix, Rhodococcus, Mycobacterium, Gordonia, and Sphingobium) were identified in both digesters and predicted to harbor the 2-arylpropionyl-CoA epimerase (enzyme involved in chiral inversion) encoding gene. These genera presented at low abundances, <0.5% in the digester dosed with (R)-2-APAs and <0.2% in the digester dosed with (S)-2-APAs. The low abundances of these genera explain the limited extent of chiral inversion observed in this study.


Asunto(s)
Flurbiprofeno , Naproxeno , Anaerobiosis , Antiinflamatorios no Esteroideos , Estereoisomerismo
6.
Sci Total Environ ; 838(Pt 1): 155871, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35568165

RESUMEN

The diversity of microalgae and bacteria allows them to form a complementary consortium for efficient wastewater treatment and nutrient recovery. This review highlights the potential of wastewater-derived microalgal biomass as a renewable feedstock for producing animal feed, biofertilisers, biofuel, and many valuable biochemicals. Data corroborated from this review shows that microalgae and bacteria can thrive in many environments. Microalgae are especially effective at utilising nutrients from the water as they grow. This review also consolidates the current understanding of microalgae characteristics and their interactions with bacteria in a consortium system. Recent studies on the performance of only microalgae and microalgae-bacteria wastewater treatment are compared and discussed to establish a research roadmap for practical implementation of the consortium systems for various wastewaters (domestic, industrial, agro-industrial, and landfill leachate wastewater). In comparison to the pure microalgae system, the consortium system has a higher removal efficiency of up to 15% and shorter treatment time. Additionally, this review addresses a variety of possibilities for biomass application after wastewater treatment.


Asunto(s)
Microalgas , Purificación del Agua , Animales , Bacterias , Biomasa , Aguas Residuales/microbiología
7.
Bioresour Technol ; 346: 126634, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34971773

RESUMEN

Hydrogen sulphide (H2S) in biogas is a problematic impurity that can inhibit methanogenesis and cause equipment corrosion. This review discusses technologies to remove H2S during anaerobic digestion (AD) via: input control, process regulation, and post-treatment. Post-treatment technologies (e.g. biotrickling filters and scrubbers) are mature with >95% removal efficiency but they do not mitigate H2S toxicity to methanogens within the AD. Input control (i.e. substrate pretreatment via chemical addition) reduces sulphur input into AD via sulphur precipitation. However, available results showed <75% of H2S removal efficiency. Microaeration to regulate AD condition is a promising alternative for controlling H2S formation. Microaeration, or the use of oxygen to regulate the redox potential at around -250 mV, has been demonstrated at pilot and full scale with >95% H2S reduction, stable methane production, and low operational cost. Further adaptation of microaeration relies on a comprehensive design framework and exchange operational experience for eliminating the risk of over-aeration.


Asunto(s)
Sulfuro de Hidrógeno , Anaerobiosis , Biocombustibles , Reactores Biológicos , Metano , Oxígeno
8.
Bioresour Technol ; 340: 125669, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34339996

RESUMEN

This study aims to elucidate the mechanisms governing the harvesting efficiency of Chlorella vulgaris by flocculation using a cationic polymer. Flocculation efficiency increased as microalgae culture matured (i.e. 35-45, 75, and > 97% efficiency at early, late exponential, and stationary phase, respectively. Unlike the negative impact of phosphate on flocculation in traditional wastewater treatment; here, phosphorous residue did not influence the flocculation efficiency of C. vulgaris. The observed dependency of flocculation efficiency on growth phase was driven by changes in microalgal cell properties. Microalgal extracellular polymeric substances (EPS) in both bound and free forms at stationary phase were two and three times higher than those at late and early exponential phase, respectively. Microalgae cells also became more negatively charged as they matured. Negatively charged and high EPS content together with the addition of high molecular weight and positively charged polymer could facilitate effective flocculation via charge neutralisation and bridging.


Asunto(s)
Chlorella vulgaris , Microalgas , Biomasa , Floculación , Polímeros
9.
Sci Total Environ ; 783: 146964, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-33866168

RESUMEN

Antimicrobial resistance (AMR) is a growing threat to human and animal health. Progress in molecular biology has revealed new and significant challenges for AMR mitigation given the immense diversity of antibiotic resistance genes (ARGs), the complexity of ARG transfer, and the broad range of omnipresent factors contributing to AMR. Municipal, hospital and abattoir wastewater are collected and treated in wastewater treatment plants (WWTPs), where the presence of diverse selection pressures together with a highly concentrated consortium of pathogenic/commensal microbes create favourable conditions for the transfer of ARGs and proliferation of antibiotic resistant bacteria (ARB). The rapid emergence of antibiotic resistant pathogens of clinical and veterinary significance over the past 80 years has re-defined the role of WWTPs as a focal point in the fight against AMR. By reviewing the occurrence of ARGs in wastewater and sludge and the current technologies used to quantify ARGs and identify ARB, this paper provides a research roadmap to address existing challenges in AMR control via wastewater treatment. Wastewater treatment is a double-edged sword that can act as either a pathway for AMR spread or as a barrier to reduce the environmental release of anthropogenic AMR. State of the art ARB identification technologies, such as metagenomic sequencing and fluorescence-activated cell sorting, have enriched ARG/ARB databases, unveiled keystone species in AMR networks, and improved the resolution of AMR dissemination models. Data and information provided in this review highlight significant knowledge gaps. These include inconsistencies in ARG reporting units, lack of ARG/ARB monitoring surrogates, lack of a standardised protocol for determining ARG removal via wastewater treatments, and the inability to support appropriate risk assessment. This is due to a lack of standard monitoring targets and agreed threshold values, and paucity of information on the ARG-pathogen host relationship and risk management. These research gaps need to be addressed and research findings need to be transformed into practical guidance for WWTP operators to enable effective progress towards mitigating the evolution and spread of AMR.


Asunto(s)
Genes Bacterianos , Aguas Residuales , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Animales , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Humanos
10.
Sci Total Environ ; 755(Pt 1): 142412, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33032127

RESUMEN

This study aims to examine the flocculation efficiency of Porphyridium purpureum (i.e. a red marine microalga with high content of pigments and fatty acids) grown in seawater medium using polyacrylamide polymers and alkaline flocculation. Polymers Flopam™ and FO3801 achieved the highest flocculation efficiency of over 99% at the optimal dose of 21 mg per g of dry biomass through charge neutralisation and bridging mechanism. The addition of sodium hydroxide, potassium hydroxide, and sodium carbonate also achieved flocculation efficiency of 98 and 91%, respectively, but high doses were required (i.e. > 500 mg per g of dry biomass). Calcium hydroxide was not as effective and could only achieve 75% flocculation efficiency. Precipitation of magnesium hydroxide was identified as the major cause of hydroxide-induced flocculation. On the other hand, sodium carbonate addition induced flocculation via both magnesium and calcium carbonate co-precipitation. The large mass of precipitates caused a sweeping effect and enmeshed the microalgal cells to trigger sedimentation. Cell membrane integrity analysis of flocculated P. purpureum indicated that polyacrylamide polymers led to significant compromised cells (i.e. 96%), compared to the alkaline bases (70-96% compromised cells). These results appear to be the first to demonstrate the high efficiency of polyacrylamide polymer and alkaline flocculation of P. purpureum but at the expense of the biomass quality.


Asunto(s)
Microalgas , Porphyridium , Resinas Acrílicas , Biomasa , Floculación , Polímeros
11.
Sci Total Environ ; 743: 140630, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32679491

RESUMEN

An effective pretreatment is the first step to enhance the digestibility of lignocellulosic biomass - a source of renewable, eco-friendly and energy-dense materials - for biofuel and biochemical productions. This review aims to provide a comprehensive assessment on the advantages and disadvantages of lignocellulosic pretreatment techniques, which have been studied at the lab-, pilot- and full-scale levels. Biological pretreatment is environmentally friendly but time consuming (i.e. 15-40 days). Chemical pretreatment is effective in breaking down lignocellulose and increasing sugar yield (e.g. 4 to 10-fold improvement) but entails chemical cost and expensive reactors. Whereas the combination of physical and chemical (i.e. physicochemical) pretreatment is energy intensive (e.g. energy production can only compensate 80% of the input energy) despite offering good process efficiency (i.e. > 100% increase in product yield). Demonstrations of pretreatment techniques (e.g. acid, alkaline, and hydrothermal) in pilot-scale have reported 50-80% hemicellulose solubilisation and enhanced sugar yields. The feasibility of these pilot and full-scale plants has been supported by government subsidies to encourage biofuel consumption (e.g. tax credits and mandates). Due to the variability in their mechanisms and characteristics, no superior pretreatment has been identified. The main challenge lies in the capability to achieve a positive energy balance and great economic viability with minimal environmental impacts i.e. the energy or product output significantly surpasses the energy and monetary input. Enhancement of the current pretreatment techno-economic efficiency (e.g. higher product yield, chemical recycling, and by-products conversion to increase environmental sustainability) and the integration of pretreatment methods to effectively treat a range of biomass will be the steppingstone for commercial lignocellulosic biorefineries.


Asunto(s)
Biocombustibles , Lignina , Biomasa , Azúcares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...