RESUMEN
Arbuscular mycorrhizal fungi (AMF) can be beneficial for plants exposed to abiotic and biotic stressors. Although widely present in agroecosystems, AMF influence on crop responses to virus infection is underexplored, particularly in woody plant species such as grapevine. Here, a two-year greenhouse experiment was set up to test the hypothesis that AMF alleviate virus-induced oxidative stress in grapevine. The 'Merlot' cultivar was infected with three grapevine-associated viruses and subsequently colonized with two AMF inocula, containing one or three species, respectively. Five and fifteen months after AMF inoculation, lipid peroxidation - LPO as an indicator of oxidative stress and indicators of antioxidative response (proline, ascorbate - AsA, superoxide dismutase - SOD, ascorbate- APX and guaiacol peroxidases - GPOD, polyphenol oxidase - PPO, glutathione reductase - GR) were analysed. Expression of genes coding for a stilbene synthase (STS1), an enhanced disease susceptibility (EDS1) and a lipoxygenase (LOX) were determined in the second harvesting. AMF induced reduction of AsA and SOD over both years, which, combined with not AMF-triggered APX and GR, suggests decreased activation of the ascorbate-glutathione cycle. In the mature phase of the AM symbiosis establishment GPOD emerged as an important mechanism for scavenging H2O2 accumulation. These results, together with reduction in STS1 and increase in EDS1 gene expression, suggest more efficient reactive oxygen species scavenging in plants inoculated with AMF. Composition of AMF inocula was important for proline accumulation. Overall, our study improves the knowledge on ubiquitous grapevine-virus-AMF systems in the field, highlighting that established functional AM symbiosis could reduce virus-induced stress.
RESUMEN
Biofortification aims to increase selenium (Se) concentration and bioavailability in edible parts of crops such as wheat (Triticum aestivum L.), resulting in increased concentration of Se in plants and/or soil. Higher Se concentrations can disturb protein structure and consequently influence glutathione (GSH) metabolism in plants which can affect antioxidative and other detoxification pathways. The aim of this study was to elucidate the impact of five different concentrations of selenate and selenite (0.4, 4, 20, 40 and 400 mg kg-1) on the ascorbate-glutathione cycle in wheat shoots and roots and to determine biochemical and molecular tissue-specific responses. Content of investigated metabolites, activities of detoxification enzymes and expression of their genes depended both on the chemical form and concentration of the applied Se, as well as on the type of plant tissue. The most pronounced changes in the expression level of genes involved in GSH metabolism were visible in wheat shoots at the highest concentrations of both forms of Se. Obtained results can serve as a basis for further research on Se toxicity and detoxification mechanisms in wheat. New insights into the Se impact on GSH metabolism could contribute to the further development of biofortification strategies.
Asunto(s)
Selenio , Selenio/farmacología , Selenio/metabolismo , Triticum/metabolismo , Plantones/metabolismo , Ácido Selénico/metabolismo , Ácido Selenioso/metabolismo , Glutatión/metabolismoRESUMEN
Fusarium head blight (FHB) is one of the most studied fungal diseases of wheat, causing massive grain yield and quality losses. This study aimed to extend previous studies on the physiological and biochemical responses of winter wheat to FHB stress in a controlled environment by focusing on the ascorbate-glutathione pathway (AsA-GSH), photosynthetic efficiency, and stress hormone levels, thus providing insight into the possible interactions of different defense mechanisms during infection. The activity of AsA-GSH metabolism was increased in FHB resistant varieties, maintaining the redox state of spikes, and consequently preserving functional photosystem II. Furthermore, carotenoids (Car) were shown to be the major pigments in the photosystem assembly, as they decreased in FHB-stressed spikes of resistant and moderately resistant varieties, compared to controls. Car are also the substrate for the synthesis of abscisic acid (ABA), which acts as a fungal effector and its elevated content leads to increased FHB susceptibility in inoculated spikes. The results of this study contributed to the knowledge of FHB resistance mechanisms and can be used to improve the breeding of FHB resistant varieties, which is considered to be the most effective control measure.
RESUMEN
Aim/Introduction: The study aimed to determine the effectiveness of early antidiabetic therapy in reversing metabolic changes caused by high-fat and high-sucrose diet (HFHSD) in both sexes. Methods: Elderly Sprague-Dawley rats, 45 weeks old, were randomized into four groups: a control group fed on the standard diet (STD), one group fed the HFHSD, and two groups fed the HFHSD along with long-term treatment of either metformin (HFHSD+M) or liraglutide (HFHSD+L). Antidiabetic treatment started 5 weeks after the introduction of the diet and lasted 13 weeks until the animals were 64 weeks old. Results: Unexpectedly, HFHSD-fed animals did not gain weight but underwent significant metabolic changes. Both antidiabetic treatments produced sex-specific effects, but neither prevented the onset of prediabetes nor diabetes. Conclusion: Liraglutide vested benefits to liver and skeletal muscle tissue in males but induced signs of insulin resistance in females.
Asunto(s)
Liraglutida , Síndrome Metabólico , Metformina , Animales , Femenino , Masculino , Ratas , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Liraglutida/uso terapéutico , Síndrome Metabólico/tratamiento farmacológico , Síndrome Metabólico/etiología , Metformina/uso terapéutico , Ratas Sprague-Dawley , Sacarosa/efectos adversos , Factores SexualesRESUMEN
Leaf rust caused by Puccinia triticina Erikss. can have devastating effects on wheat (Triticum aestivum L.), causing severe economic losses. This comprehensive study serves to facilitate our understanding of the impact of carbohydrate and antioxidant metabolism in association with sensor-based phenotyping and leaf rust stress responses in wheat seedlings. After 24 h of inoculation (hai) very susceptible variety to leaf rust (Ficko) increased cell-wall invertase (cwInv; EC 3.2.1.26), compared to other varieties that significantly increased cwInv later. This could mean that the Ficko variety cannot defend itself from leaf rust infections once symptoms have started to develop. Also, Ficko had significantly decreased amounts of cytoplasmic invertase (cytInv; EC 3.2.1.26) at 8 hai. The downregulation of cytInv in susceptible plants may facilitate the maintenance of elevated apoplastic sucrose availability favoring the pathogen. The significant role of vacuolar invertase (vacInv; EC 3.2.1.26) in moderately resistant varieties was recorded. Also, a significant decrease of glucose-6-phosphate dehydrogenase (G6PDH; EC 1.1.1.49) and UDP-glucose pyrophosphorylase (UGPase; EC 2.7.7.9) in moderately resistant varieties might restrict normal development of leaf rust due to reduced sugar. During plant-pathogen interaction, when the invader spreads systemically throughout the plant, the main role of ascorbate peroxidase (APX; EC 1.11.1.11) activity in one moderately resistant variety (Olimpija) and catalase (CAT; EC 1.11.1.6) activity in another moderately resistant variety (Alka) is to protect the plant against oxidative damage in the early stages of infection. Non-invasive phenotyping with a sensor-based technique could be used as a rapid method for pre-symptomatic determination of wheat leaf rust resistance or susceptibility.
Asunto(s)
Basidiomycota , Triticum , Triticum/genética , Plantones/genética , beta-Fructofuranosidasa , Enfermedades de las Plantas , Basidiomycota/fisiología , Resistencia a la EnfermedadRESUMEN
Introduction: Forest ecosystems are highly threatened by the simultaneous effects of climate change and invasive pathogens. Chestnut blight, caused by the invasive phytopathogenic fungus Cryphonectria parasitica, has caused severe damage to European chestnut groves and catastrophic dieback of American chestnut in North America. Within Europe, the impacts of the fungus are widely mitigated through biological control that utilizes the RNA mycovirus: Cryphonectria hypovirus 1 (CHV1). Viral infections, similarly to abiotic factors, can cause oxidative stress in their hosts leading to physiological attrition through stimulating ROS (reactive oxygen species) and NOx production. Methods: To fully understand the interactions leading to the biocontrol of chestnut blight, it is vital to determine oxidative stress damage arising during CHV1 infection, especially considering that other abiotic factors, like long-term cultivation of model fungal strains, can also impact oxidative stress. Our study compared CHV1-infected C. parasitica isolates from two Croatian wild populations with CHV1-infected model strains (EP713, Euro7 and CR23) that have experienced long-term laboratory cultivation. Results and Discussion: We determined the level of oxidative stress in the samples by measuring stress enzymes' activity and oxidative stress biomarkers. Furthermore, for the wild populations, we studied the activity of fungal laccases, expression of the laccase gene lac1, and a possible effect of CHV1 intra-host diversity on the observed biochemical responses. Relative to the wild isolates, the long-term model strains had lower enzymatic activities of superoxide dismutase (SOD) and glutathione S-transferase (GST), and higher content of malondialdehyde (MDA) and total non-protein thiols. This indicated generally higher oxidative stress, likely arising from their decades-long history of subculturing and freeze-thaw cycles. When comparing the two wild populations, differences between them in stress resilience and levels of oxidative stress were also observed, as evident from the different MDA content. The intra-host genetic diversity of the CHV1 had no discernible effect on the stress levels of the virus-infected fungal cultures. Our research indicated that an important determinant modulating both lac1 expression and laccase enzyme activity is intrinsic to the fungus itself, possibly related to the vc type of the fungus, i.e., vegetative incompatibility genotype.
RESUMEN
This study investigated the effect of dietary selenium supplementation (organic and inorganic) of late-gestation ewes on blood selenium concentrations and metabolic and antioxidant status indicators in ewes and their lambs. In addition, the efficacy of selenium transfer from ewes to lambs during the suckling period was determined. The study was conducted on 30 Merinolandschaf ewes and their lambs and lasted four months. The feed mixture of the control group (group I) contained no added selenium, while the feed mixture of group II was enriched with 0.3 mg/kg of organic selenium sources and the third group with 0.3 mg/kg of inorganic selenium sources. In ewes and their lambs, selenium supplementation significantly (p < 0.01; p < 0.05) increased selenium concentration, glutathione peroxidase, and superoxide dismutase activity and decreased malondialdehyde concentration compared to the control group. Selenium supplementation had a positive effect on metabolism and hematological indicators in lambs. A positive correlation was found between antioxidant indicators in the whole blood of ewes and lambs. The good transfer of selenium from ewes to lambs was complemented by higher correlation coefficients when the feed mixture was supplemented with organic compared to inorganic selenium.
RESUMEN
Due to climate change in recent years, there has been an increasing water deficit during the winter wheat sowing period. This study evaluated six Croatian winter wheat varieties' physiological, biochemical, and molecular responses under two drought stress levels at the germination/seedling growth stage. Lipid peroxidation was mainly induced under both drought stress treatments, while the antioxidative response was variety-specific. The most significant role in the antioxidative response had glutathione along with the ascorbate-glutathione pathway. Under drought stress, wheat seedlings responded in proline accumulation that was correlated with the P5CS gene expression. Expression of genes encoding dehydrins (DHN5, WZY2) was highly induced under the drought stress in all varieties, while genes encoding transcription factors were differentially regulated. Expression of DREB1 was upregulated under severe drought stress in most varieties, while the expression of WRKY2 was downregulated or revealed control levels. Different mechanisms were shown to contribute to the drought tolerance in different varieties, which was mainly associated with osmotic adjustment and dehydrins expression. Identifying different mechanisms in drought stress response would advance our understanding of the complex strategies contributing to wheat tolerance to drought in the early growth stage and could contribute to variety selection useful for developing new drought-tolerant varieties.
RESUMEN
In this study, we evaluated the leaf antioxidative responses of three wheat varieties (Srpanjka, Divana, and Simonida) treated with two different forms of zinc (Zn), Zn-sulfate and Zn-EDTA, in concentrations commonly used in agronomic biofortification. Zn concentration was significantly higher in the flag leaves of all three wheat varieties treated with Zn-EDTA compared to control and leaves treated with Zn-sulfate. Both forms of Zn increased malondialdehyde level and total phenolics content in varieties Srpanjka and Divana. Total glutathione content was not affected after the Zn treatment. Zn-sulfate increased the activities of glutathione reductase (GR) and guaiacol peroxidase (GPOD) in both Srpanjka and Divana, while glutathione S-transferase (GST) was only induced in var. Srpanjka. Chelate form of Zn increased the activities of GST and GPOD in both Simonida and Divana. Catalase activity was shown to be less sensitive to Zn treatment and was only induced in var. Srpanjka treated with Zn-EDTA where GPOD activity was not induced. Concentrations of Zn used for agronomic biofortification can induce oxidative stress in wheat leaves. The antioxidative status of wheat leaves could be a good indicator of Zn tolerance, whereas wheat genotype and chemical form of Zn are the most critical factors influencing Zn toxicity.
RESUMEN
AIM: To determine the effects of metformin or liraglutide on oxidative stress level and antioxidative enzymes gene expression and activity in the blood and vessels of pre-diabetic obese elderly Sprague-Dawley (SD) rats of both sexes. METHODS: Male and female SD rats were assigned to the following groups: a) control group (fed with standard rodent chow); b) high-fat and high-carbohydrate diet (HSHFD) group fed with HSHFD from 20-65 weeks of age; c) HSHFD+metformin treatment (50 mg/kg/d s.c.); and d) HSHFD+liraglutide treatment (0.3 mg/kg/d s.c). Oxidative stress parameters (ferric reducing ability of plasma and thiobarbituric acid reactive substances) and superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activity and gene expression were determined from serum, aortas, and surface brain blood vessels (BBV). RESULTS: HSHFD increased body weight in both sexes compared with the control group, while liraglutide prevented this increase. Blood glucose level did not change. The liraglutide group had a significantly increased antioxidative capacity compared with the HSHFD group in both sexes. The changes in antioxidative enzymes' activities in plasma were more pronounced in male groups. The changes in antioxidative gene expression were more prominent in microvessels and may be attributed to weight gain prevention. CONCLUSIONS: Obesity and antidiabetic drugs caused sex-related differences in the level of antioxidative parameters. Liraglutide exhibited stronger antioxidative effects than metformin. These results indicate that weight gain due to HSHFD is crucial for developing oxidative stress and for inhibiting antioxidative protective mechanisms.
Asunto(s)
Metformina , Estado Prediabético , Animales , Antioxidantes , Catalasa/metabolismo , Femenino , Glutatión Peroxidasa/metabolismo , Liraglutida/farmacología , Masculino , Metformina/farmacología , Obesidad/tratamiento farmacológico , Estrés Oxidativo , Ratas , Ratas Sprague-Dawley , Caracteres Sexuales , Superóxido Dismutasa/metabolismoRESUMEN
Abiotic and biotic stresses, such as mineral nutrition deficiency (especially nitrogen) and Fusarium attack, pose a global threat with devastating impact on wheat yield and quality losses worldwide. This preliminary study aimed to determine the effect of Fusarium inoculation and two different nitrogen levels on oxidative status and antioxidative response in nine wheat varieties. Level of lipid peroxidation, activities of antioxidant enzymes (catalase, ascorbate peroxidase, glutathione reductase), phenolics, and chloroplast pigments content were measured. In general, wheat variety, nitrogen, and Fusarium treatment had an impact on all tested parameters. The most significant effect had a low nitrogen level itself, which mostly decreased activities of all antioxidant enzymes and reduced the chloroplast pigment content. At low nitrogen level, Fusarium treatment increased activities of some antioxidative enzymes, while in a condition of high nitrogen levels, antioxidative enzyme activities were mostly decreased due to Fusarium treatment. The obtained results provided a better understanding on wheat defense mechanisms against F. culmorum, under different nitrogen treatments and can serve as an additional tool in assessing wheat tolerance to various environmental stress conditions.
RESUMEN
Epigenetic modifications may play an important role in invasion and adaptation of clonal and invasive populations to different environments. The aim of this study was to analyse epigenetic diversity and structure within and among populations of invasive pathogenic fungus Cryphonectria parasitica from south-eastern Europe, where one haplotype S12 dominates. The highest level of epigenetic diversity was found in haplotype S1, followed by S2, while the lowest level of epigenetic diversity was found in haplotype S12. Similar pattern of epigenetic diversity was detected in the control, genetically diverse Croatian population where S1 haplotype dominates. In four south-eastern European populations, the highest level of epigenetic diversity was observed in the Italian population, the oldest population in the studied area, while the lowest diversity was found in most recently established Bulgarian population. This relationship between epigenetic diversity and population age implies the important role of epigenetic modifications on the process of invasion. Our data suggest that epigenetic differences might affect the success of expansion of certain haplotype into new regions. Understanding the role of epigenetic processes in expansion and (pre)adaptation of fungal plant pathogens, besides fundamental knowledge, can contribute to development of strategies for control of fungal spread and pathogenesis.
Asunto(s)
Ascomicetos/genética , Ascomicetos/crecimiento & desarrollo , Ascomicetos/patogenicidad , Epigénesis Genética , Europa (Continente) , Variación Genética , Haplotipos , Enfermedades de las Plantas/microbiologíaRESUMEN
Selenium (Se) is an essential element for humans, animals, and certain lower plants, but can be toxic at high concentration. Even though Se is potentially toxic, little information is available about the effects of Se on soil animals. The aim of this study was to assess the impact of different concentrations of two Se forms, selenate and selenite, on earthworm Eisenia andrei. In order to obtain comprehensive overview on the Se effects, different parameters were measured. Namely, acute toxicity, apoptosis, efflux pump activity, different enzymatic and non-enzymatic biomarkers (acetylcholinesterase, carboxylesterase, glutathione S-transferase, catalase, glutathione reductase and superoxide dismutase activities, lipid peroxidation level and GSH/GSSG ratio) and expression of genes involved in oxidative and immune response have been investigated. Additionally, measurement of metallothioneins concentration and concentration of Se in exposed earthworms has been also performed. The assessment of acute toxicity showed a greater sensitivity of E. andrei to selenite exposure, whereas Se concentration measurements in earthworms showed higher accumulation of selenate form. Both Se forms caused inhibition of the efflux pump activity. Decrease in superoxide dismutase activity and increase in lipid peroxidation and glutathione reductase activity indicate that Se has a significant impact on the oxidative status of earthworms. Selenate exposure caused an apoptotic-like cell death in the coelomocytes of exposed earthworms, whereas decreased mRNA levels of stress-related genes and antimicrobial factors were observed upon the exposure to selenite. The obtained data give insight into the effects of two most common forms of Se in soil on the earthworm E. andrei.
Asunto(s)
Oligoquetos/efectos de los fármacos , Ácido Selénico/toxicidad , Ácido Selenioso/toxicidad , Contaminantes del Suelo/toxicidad , Animales , Peroxidación de Lípido/efectos de los fármacos , Oligoquetos/enzimología , Oligoquetos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Suelo/químicaRESUMEN
Invasive species, especially plant pathogens, have a potential to completely eradicate native plant species and remodel landscapes. Tripartite interactions among sweet chestnut (Castanea sativa), chestnut blight-causing invasive fungus Cryphonectria parasitica, and hyperparasitic virus Cryphonectria hypovirus 1 (CHV1) were studied in two populations. The number of different vegetative compatibility (vc) types of C. parasitica more than doubled over the 10 years, while the hypovirulence incidence dropped in one population and slightly increased in the other one. Over the course of our 3-year monitoring experiment, the prevalence of hypovirulent isolates obtained from monitored cankers increased slowly (i.e., more hypovirulent isolates were being obtained from the same cankers over time). Within studied cankers, considerable changes in vc type and CHV1 presence were observed, indicating a highly dynamic system in which virulent and hypovirulent mycelia, sometimes of discordant vc types, often appeared together. The increase in hypovirulence prevalence did not have any observable curative effect on the cankers and, occasionally, reactivation of healed cankers by new, virulent C. parasitica isolates was observed. Both short- and long-term observations and revalidation of the infected plant populations are necessary to accurately estimate disease progress and formulate an adequate disease management strategy.
Asunto(s)
Ascomicetos/fisiología , Fagaceae/microbiología , Control Biológico de Vectores/métodos , Enfermedades de las Plantas/microbiología , Ascomicetos/genética , Ascomicetos/patogenicidad , Clima , Croacia , Genotipo , Especies Introducidas , VirulenciaRESUMEN
Reactive oxygen species (ROS) and nitrogen species have an indispensable role in regulating cell signalling pathways, including transcriptional control via hypoxia inducible factor-1α (HIF-1α). Hyperbaric oxygenation treatment (HBO2) increases tissue oxygen content and leads to enhanced ROS production. In the present study DSS-induced colitis has been employed in BALB/c mice as an experimental model of gut mucosa inflammation to investigate the effects of HBO2 on HIF-1α, antioxidative enzyme, and proinflammatory cytokine genes during the colonic inflammation. Here we report that HBO2 significantly reduces severity of DSS-induced colitis, as evidenced by the clinical features, histological assessment, impaired immune cell expansion and mobilization, and reversal of IL-1ß, IL-2, and IL-6 gene expression. Gene expression and antioxidative enzyme activity were changed by the HBO2 and the inflammatory microenvironment in the gut mucosa. Strong correlation of HIF-1α mRNA level to GPx1, SOD1, and IL-6 mRNA expression suggests involvement of HIF-1α in transcriptional regulation of these genes during colonic inflammation and HBO2. This is further confirmed by a strong correlation of HIF-1α with known target genes VEGF and PGK1. Results demonstrate that HBO2 has an anti-inflammatory effect in DSS-induced colitis in mice, and this effect is at least partly dependent on expression of HIF-1α and antioxidative genes.
RESUMEN
KEY POINTS: Recent studies have shown that high salt (HS) intake leads to endothelial dysfunction and impaired vascular reactivity in different vascular beds in both animal and human models, due to increased oxidative stress. The objective of this study was to assess vascular response to flow-induced dilatation (FID) and to elucidate the role of vascular oxidative stress/antioxidative capacity in middle cerebral arteries (MCAs) of HS-fed rats in vitro. The novelty of this study is in demonstrating impaired flow-induced dilatation of MCAs and down-regulation of vascular antioxidant genes with HS intake, leading to increased levels of oxidative stress in blood vessels and peripheral lymph organs, which together contribute to impaired FID. In addition, results show increased oxidative stress in leukocytes of peripheral lymph organs, suggesting the occurrence of inflammatory processes due to HS intake. Recirculation of leukocytes might additionally increase vascular oxidative stress in vivo. ABSTRACT: The aim of this study was to determine flow-induced dilatation (FID) and the role of oxidative stress/antioxidative capacity in isolated, pressurized middle cerebral arteries (MCAs) of high salt (HS)-fed rats. Healthy male Sprague-Dawley rats (11 weeks old) were fed low salt (0.4% NaCl; LS group) or high salt (4% NaCl; HS group) diets for 1 week. Reactivity of MCAs in response to stepwise increases in pressure gradient (Δ10-Δ100 mmHg) was determined in the absence or presence of the superoxide dismutase (SOD) mimetic TEMPOL and/or the nitric oxide synthases (NOS) inhibitor N(ω) -nitro-l-arginine methyl ester (l-NAME). mRNA levels of antioxidative enzymes, NAPDH-oxidase components, inducible (iNOS) and endothelial nitric oxide synthases (eNOS) were determined by quantitative real-time PCR. Blood pressure (BP), antioxidant enzymes activity, oxidative stress in peripheral leukocytes, lipid peroxidation products and the antioxidant capacity of plasma were measured for both groups. FID was reduced in the HS group compared to the LS group. The presence of TEMPOL restored dilatation in the HS group, with no effect in the LS group. Expression of glutathione peroxidase 4 (GPx4) and iNOS in the HS group was significantly decreased; oxidative stress was significantly higher in the HS group compared to the LS group. HS intake significantly induced basal reactive oxygen species production in the leukocytes of mesenteric lymph nodes and splenocytes, and intracellular production after stimulation in peripheral lymph nodes. Antioxidant enzyme activity and BP were not affected by HS diet. Low GPx4 expression, increased superoxide production in leukocytes, and decreased iNOS expression are likely to underlie increased oxidative stress and reduced nitric oxide bioavailability, leading to impairment of FID in the HS group without changes in BP values.
Asunto(s)
Arteria Cerebral Media/fisiología , Estrés Oxidativo , Cloruro de Sodio Dietético/efectos adversos , Animales , Catalasa/metabolismo , Dilatación , Endotelio Vascular/fisiología , Glutatión Peroxidasa/metabolismo , Leucocitos/metabolismo , Masculino , Arteria Cerebral Media/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Ratas , Ratas Sprague-Dawley , Superóxido Dismutasa/metabolismoRESUMEN
The purpose of this study was to quantify the bioaccumulation of Pb, Hg, Cd, and As in tissues of carp (Cyprinus carpio) and catfish (Silurus glanis) from Busko Blato in Bosnia and Herzegovina. Arsenic concentrations were below the Maximal Admissible Concentration (MAC) for Croatia and other countries. Mercury concentrations were below 1 mg kg(-1), but in most muscle samples of both species and all catfish liver samples, the values were higher than 0.5 mg kg(-1) (higher than the MAC for many countries including Croatia). Lead concentrations were higher than 1 mg kg(-1) (the MAC for Croatia) in most muscle samples; all kidney and most catfish liver samples also exceeded 1 mg kg(-1). Cadmium concentrations in all tissues, other than the gonads, were higher than 0.1 mg kg(-1) (MAC for Croatia), with the highest concentrations found in the kidneys. The only gender difference was found in carp, where a 68.4% higher concentration of As was found in the fry compared to the milt (P<0.05). Concentrations of all of the elements were higher in catfish compared to carp for most tissues. Significant correlations were found between all of the elements in the muscles and the liver of carp. In catfish, the muscles were the only tissue in which multiple correlations were found. Linear positive correlations with age and body mass were demonstrated for the concentrations of all heavy metals for all tissues except the gonads in both fish species. We concluded that significant heavy metal accumulation in carp and a catfish tissues correlates with age and body mass; bioaccumulation is species- and tissue-specific and is different for each element.
Asunto(s)
Carpas/metabolismo , Bagres/metabolismo , Monitoreo del Ambiente , Metales Pesados/metabolismo , Contaminantes Químicos del Agua/metabolismo , Animales , Arsénico/metabolismo , Bosnia y Herzegovina , Cadmio/metabolismo , Croacia , Gónadas/metabolismo , Riñón/química , Riñón/metabolismo , Plomo/metabolismo , Hígado/química , Hígado/metabolismo , Mercurio/metabolismo , Metales Pesados/análisis , Músculos/química , Músculos/metabolismo , Contaminantes Químicos del Agua/análisisRESUMEN
Rosmarinic acid is one of the main active components of Coleus blumei and is known to have numerous health benefits. The pharmacological significance of rosmarinic acid and its production through in vitro culture has been the subject of numerous studies. Here, the ability of different tissues to accumulate rosmarinic acid and sustainability in production over long cultivation have been tested. Calli, tumours, normal roots and hairy roots were established routinely by application of plant growth regulators or by transformation with agrobacteria. The differences among the established tumour lines were highly heterogeneous. Hairy root lines showed the highest mean growth rate and consistency in rosmarinic acid production. Although some tumour lines produced more rosmarinic acid than the hairy root lines, over a long cultivation period their productivity was unstable and decreased. Further, the effects of plant growth regulators on growth and rosmarinic acid accumulation were tested. 2,4-Dichlorophenoxyacetic acid significantly reduced tumour growth and rosmarinic acid production. 1-Naphthaleneacetic acid strongly stimulated hairy root growth whilst abscisic acid strongly enhanced rosmarinic acid production. Hairy roots cultured in an airlift bioreactor exhibited the highest potential for mass production of rosmarinic acid.
RESUMEN
AIM: To estimate the impact of high fat diet and estrogen deficiency on the oxidative and antioxidative status in the liver of the ovariectomized rats, as well as the ameliorating effect of physical activity or consumption of functional food containing bioactive compounds with antioxidative properties on oxidative damage in the rat liver. METHODS: The study was conducted from November 2012 to April 2013. Liver oxidative damage was determined by lipid peroxidation levels expressed in terms of thiobarbituric acid reactive substances (TBARS), while liver antioxidative status was determined by catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), glutathione reductase (GR) activities, and glutathione (GSH) content. Sixty-four female Wistar rats were divided into eight groups: sham operated and ovariectomized rats that received either standard diet, high fat diet, or high fat diet supplemented with cereal selenized onion biscuits or high fat diet together with introduction of physical exercise of animals. RESULTS: High fat diet significantly increased TBARS content in the liver compared to standard diet (P=0.032, P=0.030). Furthermore, high fat diet decreased the activities of CAT, GR, and GST, as well as the content of GSH (P<0.050). GPx activity remained unchanged in all groups. Physical activity and consumption of cereal selenized onion biscuits showed protective effect through increased GR activity in sham operated rats (P=0.026, P=0.009), while in ovariectomized group CAT activity was increased (P=0.018) in rats that received cereal selenized onion biscuits. CONCLUSION: Feeding rats with high fat diet was accompanied by decreased antioxidative enzyme activities and increased lipid peroxidation. Bioactive compounds of cereal selenized onion biscuits showed potential to attenuate the adverse impact of high fat diet on antioxidative status.
Asunto(s)
Dieta Alta en Grasa/efectos adversos , Glutatión/metabolismo , Hígado/efectos de los fármacos , Actividad Motora/fisiología , Ovariectomía , Ovario/fisiología , Oxidorreductasas/metabolismo , Animales , Antioxidantes/metabolismo , Femenino , Peroxidación de Lípido , Hígado/enzimología , Oxidación-Reducción , Condicionamiento Físico Animal , Ratas , Ratas Wistar , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismoRESUMEN
AIM: To evaluate in a rat animal model whether ovariectomy, high fat diet (HFD), and physical activity in the form of running affect leptin receptor (Ob-R) distribution in the brain and white fat tissue compared to sham (Sh) surgery, standard diet (StD), and sedentary conditions. METHODS: The study included 48 female laboratory Wistar rats (4 weeks old). Following eight weeks of feeding with standard or HFD, rats were subjected to either OVX or Sh surgery. After surgery, all animals continued StD or HFD for the next 10 weeks. During these 10 weeks, ovariectomy and Sh groups were subjected to physical activity or sedentary conditions. Free-floating immunohistochemistry and Western blot methods were carried out to detect Ob-R in the brain and adipose tissue. RESULTS: StD-ovariectomy-sedentary group had a greater number of Ob-R positive neurons in lateral hypothalamic nuclei than StD-Sh-sedentary group. There was no difference in Ob-R positive neurons in arcuatus nuclei between all groups. Ob-R distribution in the barrel cortex was higher in HFD group than in StD group. Ob-R presence in perirenal and subcutaneous fat was decreased in StD-ovariectomy group. CONCLUSION: HFD and ovariectomy increased Ob-R distribution in lateral hypothalamic nuclei, but there was no effect on arcuatus nuclei. Our results are first to suggest that HFD, ovariectomy, and physical activity affect Ob-R distribution in the barrel cortex, which might be correlated with the role of Ob-R in election of food in rats.