Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sports Med Open ; 9(1): 27, 2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37149504

RESUMEN

Exercise has well-recognized beneficial effects on the whole body. Previous studies suggest that exercise could promote tissue regeneration and repair in various organs. In this review, we have summarized the major effects of exercise on tissue regeneration primarily mediated by stem cells and progenitor cells in skeletal muscle, nervous system, and vascular system. The protective function of exercise-induced stem cell activation under pathological conditions and aging in different organs have also been discussed in detail. Moreover, we have described the primary molecular mechanisms involved in exercise-induced tissue regeneration, including the roles of growth factors, signaling pathways, oxidative stress, metabolic factors, and non-coding RNAs. We have also summarized therapeutic approaches that target crucial signaling pathways and molecules responsible for exercise-induced tissue regeneration, such as IGF1, PI3K, and microRNAs. Collectively, the comprehensive understanding of exercise-induced tissue regeneration will facilitate the discovery of novel drug targets and therapeutic strategies.

2.
Mol Ther Nucleic Acids ; 31: 527-540, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36891498

RESUMEN

Muscle atrophy is debilitating and can be induced by several stressors. Unfortunately, there are no effective pharmacological treatment until now. MicroRNA (miR)-29b is an important target that we identified to be commonly involved in multiple types of muscle atrophy. Although sequence-specific inhibition of miR-29b has been developed, in this study, we report a novel small-molecule miR-29b inhibitor that targets miR-29b hairpin precursor (pre-miR-29b) (Targapremir-29b-066 [TGP-29b-066]) considering both its three-dimensional structure and the thermodynamics of interaction between pre-miR-29b and the small molecule. This novel small-molecule inhibitor has been demonstrated to attenuate muscle atrophy induced by angiotensin II (Ang II), dexamethasone (Dex), and tumor necrosis factor α (TNF-α) in C2C12 myotubes, as evidenced by increase in the diameter of myotube and decrease in the expression of Atrogin-1 and MuRF-1. Moreover, it can also attenuate Ang II-induced muscle atrophy in mice, as evidenced by a similar increase in the diameter of myotube, reduced Atrogin-1 and MuRF-1 expression, AKT-FOXO3A-mTOR signaling activation, and decreased apoptosis and autophagy. In summary, we experimentally identified and demonstrated a novel small-molecule inhibitor of miR-29b that could act as a potential therapeutic agent for muscle atrophy.

3.
Adv Biol (Weinh) ; 7(4): e2200204, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36683183

RESUMEN

It is well known that exercise is beneficial for cardiovascular health. Oxidative stress is the common pathological basis of many cardiovascular diseases. The overproduction of free radicals, both reactive oxygen species and reactive nitrogen species, can lead to redox imbalance and exacerbate oxidative damage to the cardiovascular system. Maintaining redox homeostasis and enhancing anti-oxidative capacity are critical mechanisms by which exercise protects against cardiovascular diseases. Moderate-intensity exercise is an effective means to maintain cardiovascular redox homeostasis. Moderate-intensity exercise reduces the risk of cardiovascular disease by improving mitochondrial function and anti-oxidative capacity. It also attenuates adverse cardiac remodeling and enhances cardiac function. This paper reviews the primary mechanisms of moderate-intensity exercise-mediated redox homeostasis in the cardiovascular system. Exploring the role of exercise-mediated redox homeostasis in the cardiovascular system is of great significance to the prevention and treatment of cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , Sistema Cardiovascular , Humanos , Enfermedades Cardiovasculares/prevención & control , Enfermedades Cardiovasculares/patología , Estrés Oxidativo , Oxidación-Reducción , Sistema Cardiovascular/patología , Homeostasis
6.
J Cardiovasc Transl Res ; 16(1): 51-62, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35921051

RESUMEN

Exercise is a preferred strategy for improving cardiac function, especially for patients with cardiovascular diseases. Increasing evidence indicates that oxidative stress is involved in exercise-induced cardioprotection, while the underlying mechanism remains unclear. Furthermore, the effect of antioxidant supplementation during or post-exercise still exists despite divergences. To explore the effect of oxidative stress and antioxidant supplementation on cardiovascular homeostasis during or post-exercise, we take insights into the progress of exercise-induced oxidative stress, antioxidant supplementation, and cardiovascular homeostasis. In particular, antioxidants such as vitamin C or E, gamma-oryzanol, and other natural antioxidants are discussed concerning regulating exercise-associated oxidative stress. Additionally, our present study reviewed and discussed a meta-analysis of antioxidant supplementation during exercise. Overall, we take an insight into the essential biological adaptations in response to exercise and the effects of antioxidant supplementation on cardiac function, which aid us in giving recommendations on antioxidant supplementation for exercisers and exercised people. A better understanding of these issues will broaden our knowledge of exercise physiology.


Asunto(s)
Antioxidantes , Amigos , Humanos , Antioxidantes/farmacología , Suplementos Dietéticos , Ejercicio Físico/fisiología , Estrés Oxidativo , Homeostasis
7.
J Nanobiotechnology ; 20(1): 304, 2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35761332

RESUMEN

Muscle atrophy is a frequently observed complication, characterized by the loss of muscle mass and strength, which diminishes the quality of life and survival. No effective therapy except exercise is currently available. In our previous study, repressing miR-29b has been shown to reduce muscle atrophy. In our current study, we have constructed artificially engineered extracellular vesicles for the delivery of CRISPR/Cas9 to target miR-29b (EVs-Cas9-29b). EVs-Cas9-29b has shown a favorable functional effect with respect to miR-29b repression in a specific and rapid manner by gene editing. In in vitro conditions, EVs-Cas9-29b could protect against muscle atrophy induced by dexamethasone (Dex), angiotensin II (AngII), and tumor necrosis factor-alpha (TNF-α). And EVs-Cas9-29b introduced in vivo preserved muscle function in the well-established immobilization and denervation-induced muscle atrophy mice model. Our work demonstrates an engineered extracellular vesicles delivery of the miR-29b editing system, which could be potentially used for muscle atrophy therapy.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Atrofia Muscular , Animales , Sistemas CRISPR-Cas , Ratones , MicroARNs/genética , Atrofia Muscular/genética , Atrofia Muscular/terapia , Factor de Necrosis Tumoral alfa
8.
Aging Cell ; 21(7): e13657, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35718942

RESUMEN

With the aging of the global population, accumulating interest is focused on manipulating the fundamental aging-related signaling pathways to delay the physiological aging process and eventually slow or prevent the appearance or severity of multiple aging-related diseases. Recently, emerging evidence has shown that RNA modifications, which were historically considered infrastructural features of cellular RNAs, are dynamically regulated across most of the RNA species in cells and thereby critically involved in major biological processes, including cellular senescence and aging. In this review, we summarize the current knowledge about RNA modifications and provide a catalog of RNA modifications on different RNA species, including mRNAs, miRNAs, lncRNA, tRNAs, and rRNAs. Most importantly, we focus on the regulation and roles of these RNA modifications in aging-related diseases, including neurodegenerative diseases, cardiovascular diseases, cataracts, osteoporosis, and fertility decline. This would be an important step toward a better understanding of fundamental aging mechanisms and thereby facilitating the development of novel diagnostics and therapeutics for aging-related diseases.


Asunto(s)
Envejecimiento/patología , MicroARNs , ARN Largo no Codificante , Senescencia Celular , MicroARNs/química , ARN Largo no Codificante/química , ARN Mensajero/química
9.
Front Cardiovasc Med ; 9: 896792, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35770215

RESUMEN

Anthracyclines (ANTs) are a class of anticancer drugs widely used in oncology. However, the clinical application of ANTs is limited by their cardiotoxicity. The mechanisms underlying ANTs-induced cardiotoxicity (AIC) are complicated and involve oxidative stress, inflammation, topoisomerase 2ß inhibition, pyroptosis, immunometabolism, autophagy, apoptosis, ferroptosis, etc. Ferroptosis is a new form of regulated cell death (RCD) proposed in 2012, characterized by iron-dependent accumulation of reactive oxygen species (ROS) and lipid peroxidation. An increasing number of studies have found that ferroptosis plays a vital role in the development of AIC. Therefore, we aimed to elaborate on ferroptosis in AIC, especially by doxorubicin (DOX). We first summarize the mechanisms of ferroptosis in terms of oxidation and anti-oxidation systems. Then, we discuss the mechanisms related to ferroptosis caused by DOX, particularly from the perspective of iron metabolism of cardiomyocytes. We also present our research on the prevention and treatment of AIC based on ferroptosis. Finally, we enumerate our views on the development of drugs targeting ferroptosis in this emerging field.

11.
J Transl Int Med ; 10(3): 236-245, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36776239

RESUMEN

In the past few decades, obesity in the pediatric population has dramatically increased and is common in many countries. Childhood obesity often causes health problems and increases the risk of cardiometabolic diseases such as type 2 diabetes, nonalcohol fatty liver, and cardiovascular diseases. Obesity in young people has been closely associated with environmental, behavioral, and genetic defects, including the availability of high-energy and sugary food and beverages, sedentary behavior, and hereditary factors. Few drugs are currently available to treat obesity in children and adolescents because it is difficult to demonstrate the safety of these drugs on the growth and development of the youth. Lifestyle modifications, such as diet control and physical exercise, are the primary approaches for preventing and treating childhood obesity. Among them, physical activity is a crucial component. This review summarizes the epidemiology, cardiometabolic risk of obesity, therapeutic strategies, and the benefits of exercise on obesity-related chronic diseases in children and adolescents.

12.
Bioconjug Chem ; 29(11): 3913-3922, 2018 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-30352502

RESUMEN

Manipulating the chiroptical properties at the nanoscale is of great importance in stereoselective reactions, enantioseparation, self-assembly, and biological phenomena. In recent years, carbon dots have garnered great attention because of their favorable properties such as tunable fluorescence, high biocompatibility, and facile, scalable synthetic procedures. Herein, we report for the first time the unusual behavior of cyclic amino acids on the surface of carbon dots prepared via microwave-based carbonization. Various amino acids were introduced on the surface of carbon dots via EDC/NHS conjugation at room temperature. Circular dichroism results revealed that although most of the surface conjugated amino acids can preserve their chirality on negatively charged, "bare" carbon dots, the "handedness" of cyclic α-amino acids can be flipped when covalently attached on carbon dots. Moreover, these chiroptical carbon dots were found to interact with the cellular membrane or its mimic in a highly selective manner due to their acquired asymmetric selectivity. A comprehensive inhibitor study was conducted to investigate the pathway of cellular trafficking of these carbon dots. Overall, it was concluded that the chirality of the amino acid on the surface of carbon dots could regulate many of the cellular processes.


Asunto(s)
Aminoácidos/química , Carbono/química , Puntos Cuánticos/química , Aminoácidos/metabolismo , Carbono/metabolismo , Dicroismo Circular , Ciclización , Endocitosis , Humanos , Células MCF-7 , Microondas , Modelos Moleculares , Puntos Cuánticos/metabolismo , Puntos Cuánticos/ultraestructura , Estereoisomerismo , Propiedades de Superficie
13.
Biomaterials ; 181: 252-267, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30096560

RESUMEN

The removal of tenacious dental plaque is of paramount importance; however, early diagnosis can be a challenging task in dental clinics due to the limitations of current approaches, specifically X-ray-based techniques. We have approached this problem by integrating antibacterial properties and X-ray contrast enhancement in a single probe specific to colonies of Streptococcus mutans as the most predominant and carious oral bacteria. We report the synthesis of an inherently therapeutic polymeric silane conjugated hafnium oxide nanoparticles (Hf PS NPs). Using a high-affinity pathogen-selective peptide, the concept of molecularly targeted X-ray imaging of cariogenic pathogen S. mutans was demonstrated. Ex vivo studies using extracted human tooth demonstrated striking X-ray attenuation of NPs vs. tooth. Additionally, Hf PS NPs exhibited significant bactericidal properties against cariogenic pathogen. Electron microscopy revealed that the antibacterial activity occurred via a 'latch and kill' mechanism. Mechanistic studies determined that these NPs fragmented bacterial DNA components to exert their antimicrobial effect. Importantly, Hf PS NPs effectively inhibited the growth of a mature biofilm on an ex vivo human tooth model. Finally, the NPs were applied to the rodent model of dental biofilm. Topical administration of the Hf PS NPs for 8 days (1X daily) could effectively attenuate the S. mutans biofilm challenge. This report is the first of its kind to demonstrate that HfO2-based NPs can be used for simultaneous diagnosis and antibacterial treatment without requiring an additional drug.


Asunto(s)
Hafnio/química , Nanopartículas/química , Óxidos/química , Streptococcus mutans/efectos de los fármacos , Streptococcus mutans/patogenicidad , Animales , Biopelículas/efectos de los fármacos , Femenino , Espectrometría de Masas , Plásmidos/genética , Ratas , Ratas Sprague-Dawley , Infecciones Estreptocócicas/tratamiento farmacológico
14.
Bioorg Med Chem Lett ; 27(18): 4288-4293, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28838699

RESUMEN

This study reports the simultaneous delivery of EGFP siRNA and the chemotherapeutic drug, doxorubicin by means of the composition that results from the electrostatic interaction between positively charged siRNA-complexes of gold nanoparticles (AuNPs) capped with PEI, 25kDa (P25-AuNPs) and negatively charged carboxymethyl cellulose formulated PLGA nanoparticles loaded with doxorubicin. The nanoparticles and their facile interaction were studied by means of dynamic light scattering (DLS), zeta potential, transmission electron microscopic (TEM) measurements. The flow cytometric and confocal microscopic analysis evidenced the simultaneous internalization of both labelled siRNA and doxorubin into around 55% of the HeLa cancer cell population. Fluorescence microscopic studies enabled the visual analysis of EGFP expressing HeLa cells which suggested that the composition mediated codelivery resulted in a substantial downregulation of EGFP expression and intracellular accumulation of doxorubicin. Interestingly, codelivery treatment resulted in an increased cellular delivery of doxorubicin when compared to PLGA-DOX alone treatment. On the other hand, the activity of siRNA complexes of PEI-AuNPs was completely retained even when they were part of composition. The results suggest that this formulation can serve as promising tool for delivery applications in combinatorial anticancer therapy.


Asunto(s)
Antineoplásicos/farmacología , Doxorrubicina/farmacología , Oro/química , Ácido Láctico/química , Nanopartículas del Metal/química , Polietileneimina/química , Ácido Poliglicólico/química , ARN Interferente Pequeño/farmacología , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Doxorrubicina/química , Sistemas de Liberación de Medicamentos , Ensayos de Selección de Medicamentos Antitumorales , Proteínas Fluorescentes Verdes/química , Células HeLa , Humanos , Estructura Molecular , Tamaño de la Partícula , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , ARN Interferente Pequeño/química , Relación Estructura-Actividad , Propiedades de Superficie
15.
Chem Commun (Camb) ; 52(47): 7513-6, 2016 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-27214647

RESUMEN

Chiral carbon nanoparticles (CCNPs) were developed by surface passivation using the chiral ligand (-)-sparteine or (+)-sparteine (denoted (-)-SP/CNP and (+)-SP/CNP, respectively). The chirality of the prepared CCNPs was demonstrated by circular dichroism and polarimetry and employed as an enantioselective separation platform for representative racemic mixtures.

16.
Org Biomol Chem ; 13(14): 4310-20, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25762431

RESUMEN

Herein, we present the design and synthesis of new redox-active monomeric and dimeric (gemini) cationic lipids based on ferrocenylated cholesterol derivatives for gene delivery. The cationic cholesterols are shown to be transfection efficient after being formulated with the neutral helper lipid DOPE in the presence of serum (FBS). The redox activity of the resulting co-liposomes and their lipoplexes could be regulated using the alkanyl ferrocene moiety attached to the ammonium head groups of the cationic cholesterols. Atomic force microscopy (AFM), dynamic light scattering (DLS) and zeta potential measurements were performed to characterize the co-liposomal aggregates and their complexes with pDNA. The transfection efficiency of lipoplexes could be tuned by changing the oxidation state of the ferrocene moiety. The gene transfection capability was assayed in terms of green fluorescence protein (GFP) expression using pEGFP-C3 plasmid DNA in three cell lines of different origins, namely Caco-2, HEK293T and HeLa, in the presence of serum. The vesicles possessing ferrocene in the reduced state induced an efficient transfection, even better than a commercial reagent Lipofectamine 2000 (Lipo 2000) as evidenced by flow cytometry and fluorescence microscopy. All the co-liposomes containing the oxidized ferrocene displayed diminished levels of gene expression. Gene transfection events from the oxidized co-liposomes were further potentiated by introducing ascorbic acid (AA) as a reducing agent during lipoplex incubation with cells, leading to the resumption of transfection activity. Assessment of transfection capability of both reduced and oxidized co-liposomes was also undertaken following cellular internalization of labelled pDNA using confocal microscopy and flow cytometry. Overall, we demonstrate here controlled gene transfection activities using redox-driven, transfection efficient cationic monomeric and dimeric cholesterol lipids. Such systems could be used in gene delivery applications where transfection needs to be performed spatially or temporally.


Asunto(s)
Colesterol/química , Dimerización , Portadores de Fármacos/química , Compuestos Ferrosos/química , Suero/metabolismo , Transfección/métodos , Animales , Ácido Ascórbico/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Colesterol/metabolismo , Colesterol/toxicidad , Portadores de Fármacos/metabolismo , Portadores de Fármacos/toxicidad , Humanos , Liposomas/química , Metalocenos , Oxidación-Reducción
17.
J Mater Chem B ; 3(11): 2318-2330, 2015 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-32262062

RESUMEN

Herein, we present six new lipopolymers based on low molecular weight, branched polyethylenimine (BPEI 800 Da) which are hydrophobically modified using ferrocene terminated alkyl tails of variable lengths. The effects of degree of grafting, spacer length and the redox state of ferrocene in the lipopolymers on the self assembly properties were investigated in detail by TEM, AFM, DLS and zeta potential measurements. The assemblies displayed an oxidation induced increase in the size of the aggregates. The co-liposomes comprising the lipopolymer and a helper lipid, 1,2-dioleoyl phosphatidyl ethanolamine (DOPE), showed excellent gene (pDNA) delivery capability in a serum containing environment in two cancer cell lines (HeLa and U251 cells). Optimized formulations showed remarkably higher transfection activity than BPEI (25 kDa) and were also significantly better than a commercial transfection reagent, Lipofectamine 2000 as evidenced from both the luciferase activity and GFP expression analysis. Oxidation of ferrocene in the lipopolymers led to drastically reduced levels of gene transfection which was substantiated by reduced cellular internalization of fluorescently labelled pDNA as detected using confocal microscopy and flow cytometry. Moreover, the transfection inactive oxidized lipopolyplexes could be turned transfection active by exposure to ascorbic acid (AA) in cell culture medium during transfection. Endocytosis inhibition experiments showed that gene expression mediated by reduced formulations involved both clathrin and caveolae mediated pathways while the oxidized formulations were routed via the caveolae. Cytotoxicity assays revealed no obvious toxicity for the lipopolyplexes in the range of optimized transfection levels in both the cell lines studied. Overall, we have exploited the redox activity of ferrocene in branched PEI-based efficient polymeric gene carriers whose differential transfection activities could be harnessed for spatial or temporal cellular transfections.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA