Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.374
Filtrar
1.
J Ethnopharmacol ; 336: 118522, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38971345

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Labisia pumila (Blume) Fern.-Vill, also known as Kacip Fatimah, is a traditional medicinal herb common throughout Southeast Asia. It is primarily used to facilitate childbirth and postpartum recovery in women. Additionally, it can also be used to treat dysentery, rheumatism, gonorrhea, and as an anti-flatulent. AIM OF THIS REVIEW: This article aims to provide a comprehensive review of the traditional uses, botany, cultivation, phytochemistry, pharmacological effects, practical applications, and potential uses of L. pumila (LP). Furthermore, we also explore the safety of this plant and its potential prospects for application. MATERIALS AND METHODS: The keywords "Labisia pumila," "Kacip Fatimah," and "Marantodes pumilum" were used to collect relevant information through electronic searches (including Elsevier, PubMed, Google Scholar, Baidu Scholar, CNKI, ScienceDirect, and Web of Science). RESULTS: This review summarizes 102 chemical components from different parts of the plant, including flavonoids, phenolic acids, saponins, and other chemical components. In addition, we also address the associated cultivation conditions, traditional uses, pharmacological effects and toxicity. A large number of reports indicate that LP has various pharmacological effects such as antioxidant, phytoestrogenic, anti-inflammtory, antimicrobial, anti-osteoporosis and anti-obesity properties. These results provide valuable references for future research on LP. In addition, LP is also a potential medicinal and edible plant, and is currently sold on the market as a dietary supplement. CONCLUSIONS: LP is a renowned traditional ethnic medicine with numerous pharmacological activities attributed to its bioactive components. Therefore, isolation and identification of the chemical components in LP can be a focus of our future research. Current studies have focused only on the effects of LP on estrogen deficiency-related diseases in women and bone diseases. There is no scientific evidence for other traditional uses. Therefore, it is important to further explore its pharmacological activities and fill the research gaps related to other traditional uses. Furthermore, research on its safety should be expanded to prepare clinical applications.


Asunto(s)
Etnofarmacología , Medicina Tradicional , Fitoquímicos , Extractos Vegetales , Humanos , Fitoquímicos/farmacología , Fitoquímicos/química , Medicina Tradicional/métodos , Etnofarmacología/métodos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Animales , Fitoterapia , Plantas Medicinales/química , Primulaceae/química
2.
Biomaterials ; 312: 122711, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39088911

RESUMEN

The unsuitable deformation stimulus, harsh urine environment, and lack of a regenerative microenvironment (RME) prevent scaffold-based urethral repair and ultimately lead to irreversible urethral scarring. The researchers clarify the optimal elastic modulus of the urethral scaffolds for urethral repair and design a multilayered PVA hydrogel scaffold for urethral scar-free healing. The inner layer of the scaffold has self-healing properties, which ensures that the wound effectively resists harsh urine erosion, even when subjected to sutures. In addition, the scaffold's outer layer has an extracellular matrix-like structure that synergizes with adipose-derived stem cells to create a favorable RME. In vivo experiments confirm successful urethral scar-free healing using the PVA multilayered hydrogel scaffold. Further mechanistic study shows that the PVA multilayer hydrogel effectively resists the urine-induced inflammatory response and accelerates the transition of urethral wound healing to the proliferative phase by regulating macrophage polarization, thus providing favorable conditions for urethral scar-free healing. This study provides mechanical criteria for the fabrication of urethral tissue-engineered scaffolds, as well as important insights into their design.


Asunto(s)
Módulo de Elasticidad , Hidrogeles , Andamios del Tejido , Uretra , Cicatrización de Heridas , Andamios del Tejido/química , Animales , Hidrogeles/química , Ingeniería de Tejidos/métodos , Ratones , Regeneración , Cicatriz/patología , Masculino , Microambiente Celular , Ratas Sprague-Dawley , Células Madre/citología
3.
Neural Regen Res ; 20(3): 873-886, 2025 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38886959

RESUMEN

JOURNAL/nrgr/04.03/01300535-202503000-00031/figure1/v/2024-06-17T092413Z/r/image-tiff Specialized pro-resolving lipid mediators including maresin 1 mediate resolution but the levels of these are reduced in Alzheimer's disease brain, suggesting that they constitute a novel target for the treatment of Alzheimer's disease to prevent/stop inflammation and combat disease pathology. Therefore, it is important to clarify whether they counteract the expression of genes and proteins induced by amyloid-ß. With this objective, we analyzed the relevance of human monocyte-derived microglia for in vitro modeling of neuroinflammation and its resolution in the context of Alzheimer's disease and investigated the pro-resolving bioactivity of maresin 1 on amyloid-ß42-induced Alzheimer's disease-like inflammation. Analysis of RNA-sequencing data and secreted proteins in supernatants from the monocyte-derived microglia showed that the monocyte-derived microglia resembled Alzheimer's disease-like neuroinflammation in human brain microglia after incubation with amyloid-ß42. Maresin 1 restored homeostasis by down-regulating inflammatory pathway related gene expression induced by amyloid-ß42 in monocyte-derived microglia, protection of maresin 1 against the effects of amyloid-ß42 is mediated by a re-balancing of inflammatory transcriptional networks in which modulation of gene transcription in the nuclear factor-kappa B pathway plays a major part. We pinpointed molecular targets that are associated with both neuroinflammation in Alzheimer's disease and therapeutic targets by maresin 1. In conclusion, monocyte-derived microglia represent a relevant in vitro microglial model for studies on Alzheimer's disease-like inflammation and drug response for individual patients. Maresin 1 ameliorates amyloid-ß42-induced changes in several genes of importance in Alzheimer's disease, highlighting its potential as a therapeutic target for Alzheimer's disease.

4.
J Environ Sci (China) ; 147: 101-113, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003032

RESUMEN

Control of N-nitrosodimethylamine (NDMA) in drinking water could be achieved by removing its precursors as one practical way. Herein, superfine powdered activated carbons with a diameter of about 1 µm (SPACs) were successfully prepared by grinding powdered activated carbon (PAC, D50=24.3 µm) and applied to remove model NDMA precursors, i.e. ranitidine (RAN) and nizatidine (NIZ). Results from grain diameter experiments demonstrated that the absorption velocity increased dramatically with decreasing particle size, and the maximum increase in k2 was 26.8-folds for RAN and 33.4-folds for NIZ. Moreover, kinetic experiments explained that rapid absorption could be attributed to the acceleration of intraparticle diffusion due to the shortening of the diffusion path. Furthermore, performance comparison experiments suggested that the removal of RAN and NIZ (C0=0.5 mg/L) could reach 61.3% and 60%, respectively, within 5 min, when the dosage of SAPC-1.1 (D50=1.1 µm) was merely 5 mg/L, while PAC-24.3 could only eliminate 17.5% and 18.6%. The adsorption isotherm was well defined by Langmuir isotherm model, indicating that the adsorption of RAN/NIZ was a monolayer coverage process. The adsorption of RAN or NIZ by SAPC-1.1 and PAC-24.3 was strongly pH dependent, and high adsorption capacity could be observed under the condition of pH > pka+1. The coexistence of humic acid (HA) had no significant effect on the adsorption performance because RAN/NIZ may be coupled with HA and removed simultaneously. The coexistence of anions had little effect on the adsorption also. This study is expected to provide an alternative strategy for drinking water safety triggered by NDMA.


Asunto(s)
Carbón Orgánico , Dimetilnitrosamina , Tamaño de la Partícula , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Carbón Orgánico/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Dimetilnitrosamina/química , Cinética , Modelos Químicos
5.
Neural Regen Res ; 20(5): 1467-1482, 2025 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-39075913

RESUMEN

JOURNAL/nrgr/04.03/01300535-202505000-00029/figure1/v/2024-07-28T173839Z/r/image-tiff Schwann cell transplantation is considered one of the most promising cell-based therapy to repair injured spinal cord due to its unique growth-promoting and myelin-forming properties. A the Food and Drug Administration-approved Phase I clinical trial has been conducted to evaluate the safety of transplanted human autologous Schwann cells to treat patients with spinal cord injury. A major challenge for Schwann cell transplantation is that grafted Schwann cells are confined within the lesion cavity, and they do not migrate into the host environment due to the inhibitory barrier formed by injury-induced glial scar, thus limiting axonal reentry into the host spinal cord. Here we introduce a combinatorial strategy by suppressing the inhibitory extracellular environment with injection of lentivirus-mediated transfection of chondroitinase ABC gene at the rostral and caudal borders of the lesion site and simultaneously leveraging the repair capacity of transplanted Schwann cells in adult rats following a mid-thoracic contusive spinal cord injury. We report that when the glial scar was degraded by chondroitinase ABC at the rostral and caudal lesion borders, Schwann cells migrated for considerable distances in both rostral and caudal directions. Such Schwann cell migration led to enhanced axonal regrowth, including the serotonergic and dopaminergic axons originating from supraspinal regions, and promoted recovery of locomotor and urinary bladder functions. Importantly, the Schwann cell survival and axonal regrowth persisted up to 6 months after the injury, even when treatment was delayed for 3 months to mimic chronic spinal cord injury. These findings collectively show promising evidence for a combinatorial strategy with chondroitinase ABC and Schwann cells in promoting remodeling and recovery of function following spinal cord injury.

6.
Neural Regen Res ; 20(1): 29-40, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38767474

RESUMEN

The development of neurodegenerative diseases is closely related to the disruption of central nervous system homeostasis. Microglia, as innate immune cells, play important roles in the maintenance of central nervous system homeostasis, injury response, and neurodegenerative diseases. Lactate has been considered a metabolic waste product, but recent studies are revealing ever more of the physiological functions of lactate. Lactylation is an important pathway in lactate function and is involved in glycolysis-related functions, macrophage polarization, neuromodulation, and angiogenesis and has also been implicated in the development of various diseases. This review provides an overview of the lactate metabolic and homeostatic regulatory processes involved in microglia lactylation, histone versus non-histone lactylation, and therapeutic approaches targeting lactate. Finally, we summarize the current research on microglia lactylation in central nervous system diseases. A deeper understanding of the metabolic regulatory mechanisms of microglia lactylation will provide more options for the treatment of central nervous system diseases.

7.
Biomaterials ; 313: 122772, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39190942

RESUMEN

Implant-associated infection (IAI) has become an intractable challenge in clinic. The healing of IAI is a complex physiological process involving a series of spatiotemporal connected events. However, existing titanium-based implants in clinic suffer from poor antibacterial effect and single function. Herein, a versatile surface platform based on the presentation of sequential function is developed. Fabrication of titania nanotubes and poly-γ-glutamic acid (γ-PGA) achieves the efficient incorporation of silver ions (Ag+) and the pH-sensitive release in response to acidic bone infection microenvironment. The optimized PGA/Ag platform exhibits satisfactory biocompatibility and converts macrophages from pro-inflammatory M1 to pro-healing M2 phenotype during the subsequent healing stage, which creates a beneficial osteoimmune microenvironment and promotes angio/osteogenesis. Furthermore, the PGA/Ag platform mediates osteoblast/osteoclast coupling through inhibiting CCL3/CCR1 signaling. These biological effects synergistically improve osseointegration under bacterial infection in vivo, matching the healing process of IAI. Overall, the novel integrated PGA/Ag surface platform proposed in this study fulfills function cascades under pathological state and shows great potential in IAI therapy.


Asunto(s)
Antibacterianos , Ácido Poliglutámico , Plata , Titanio , Animales , Titanio/química , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Ratones , Ácido Poliglutámico/química , Ácido Poliglutámico/análogos & derivados , Plata/química , Plata/farmacología , Propiedades de Superficie , Nanotubos/química , Células RAW 264.7 , Infecciones Relacionadas con Prótesis/tratamiento farmacológico , Oseointegración/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Osteoblastos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Cicatrización de Heridas/efectos de los fármacos , Prótesis e Implantes
8.
Food Chem ; 462: 141008, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39217746

RESUMEN

Hydrophobic bioactive compounds like astaxanthin (AST) exhibit poor water solubility and low bioavailability. Liposomes, which serve as nanocarriers, are known for their excellent biocompatibility and minimal immunogenicity. Traditionally, liposomes have been primarily constructed using phospholipids and cholesterol. However, the intake of cholesterol may pose a risk to human health. Phytosterol ester was reported to reduce level of cholesterol and improve properties of liposomes. In this study, phytosterol oleate was used to prepare liposomes instead of cholesterol to deliver AST (AST-P-Lip). The size range of AST-P-Lip was 100-220 nm, and the morphology was complete and uniform. In vitro studies showed that AST-P-Lip significantly enhanced the antioxidant activity and oral bioavailability of AST. During simulated digestion, AST-P-Lip protected AST from damage by gastric and intestinal digestive fluid. Additionally, AST-P-Lip had a good storage stability and safety. These results provide references for the preparation of novel liposomes and the delivery of bioactive compounds.


Asunto(s)
Colesterol , Liposomas , Fitosteroles , Xantófilas , Liposomas/química , Xantófilas/química , Xantófilas/farmacología , Xantófilas/administración & dosificación , Humanos , Fitosteroles/química , Fitosteroles/farmacología , Fitosteroles/administración & dosificación , Colesterol/química , Tamaño de la Partícula , Disponibilidad Biológica , Ácido Oléico/química , Composición de Medicamentos , Animales , Antioxidantes/química , Antioxidantes/farmacología
9.
Synth Syst Biotechnol ; 10(1): 58-67, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39247801

RESUMEN

Vitamin A is a micronutrient critical for versatile biological functions and has been widely used in the food, cosmetics, pharmaceutical, and nutraceutical industries. Synthetic biology and metabolic engineering enable microbes, especially the model organism Saccharomyces cerevisiae (generally recognised as safe) to possess great potential for the production of vitamin A. Herein, we first generated a vitamin A-producing strain by mining ß-carotene 15,15'-mono(di)oxygenase from different sources and identified two isoenzymes Mbblh and Ssbco with comparable catalytic properties but different catalytic mechanisms. Combinational expression of isoenzymes increased the flux from ß-carotene to vitamin A metabolism. To modulate the vitamin A components, retinol dehydrogenase 12 from Homo sapiens was introduced to achieve more than 90 % retinol purity using shake flask fermentation. Overexpressing POS5Δ17 enhanced the reduced nicotinamide adenine dinucleotide phosphate pool, and the titer of vitamin A was elevated by almost 46 %. Multi-copy integration of the key rate-limiting step gene Mbblh further improved the synthesis of vitamin A. Consequently, the titer of vitamin A in the strain harbouring the Ura3 marker was increased to 588 mg/L at the shake-flask level. Eventually, the highest reported titer of 5.21 g/L vitamin A in S. cerevisiae was achieved in a 1-L bioreactor. This study unlocked the potential of S. cerevisiae for synthesising vitamin A in a sustainable and economical way, laying the foundation for the commercial-scale production of bio-based vitamin A.

10.
Med Biol Eng Comput ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39316283

RESUMEN

Previous 3D encoder-decoder segmentation architectures struggled with fine-grained feature decomposition, resulting in unclear feature hierarchies when fused across layers. Furthermore, the blurred nature of contour boundaries in medical imaging limits the focus on high-frequency contour features. To address these challenges, we propose a Multi-oriented Hierarchical Extraction and Dual-frequency Decoupling Network (HEDN), which consists of three modules: Encoder-Decoder Module (E-DM), Multi-oriented Hierarchical Extraction Module (Multi-HEM), and Dual-frequency Decoupling Module (Dual-DM). The E-DM performs the basic encoding and decoding tasks, while Multi-HEM decomposes and fuses spatial and slice-level features in 3D, enriching the feature hierarchy by weighting them through 3D fusion. Dual-DM separates high-frequency features from the reconstructed network using self-supervision. Finally, the self-supervised high-frequency features separated by Dual-DM are inserted into the process following Multi-HEM, enhancing interactions and complementarities between contour features and hierarchical features, thereby mutually reinforcing both aspects. On the Synapse dataset, HEDN outperforms existing methods, boosting Dice Similarity Score (DSC) by 1.38% and decreasing 95% Hausdorff Distance (HD95) by 1.03 mm. Likewise, on the Automatic Cardiac Diagnosis Challenge (ACDC) dataset, HEDN achieves  0.5% performance gains across all categories.

11.
Adv Sci (Weinh) ; : e2402299, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39316370

RESUMEN

Embryo implantation and decidualization are crucial for a successful pregnancy. How the inflammatory response is regulated during these processes is undefined. Pyroptosis is an inflammatory form of cell death mediated by gasdermin D (GSDMD). Through in vivo, cultured epithelial cells and organoids, it is shown that pyroptosis occurs in epithelial cells at the implantation site. Compared with those on day 4 of pseudopregnancy and delayed implantation, pyroptosis-related protein levels are significantly increased on day 4 of pregnancy and activated implantation, suggesting that blastocysts are involved in regulating pyroptosis. Blastocyst-derived cathepsin B (CTSB) is stimulated by preimplantation estradiol-17ß and induces pyroptosis in epithelial cells. Pyroptosis-induced IL-18 secretion from epithelial cells activates a disintegrin and metalloprotease 12 (ADAM12) to process the epiregulin precursor into mature epiregulin. Epiregulin (EREG) enhances in vitro decidualization in mice. Pyroptosis-related proteins are detected in the mid-secretory human endometrium and are elevated in the recurrent implantation failure endometrium. Lipopolysaccharide treatment in pregnant mice causes implantation failure and increases pyroptosis-related protein levels. Therefore, the data suggest that modest pyroptosis is beneficial for embryo implantation and decidualization. Excessive pyroptosis can be harmful and lead to pregnancy failure.

12.
Artículo en Inglés | MEDLINE | ID: mdl-39316710

RESUMEN

The integration of solar steam generation and the hydrovoltaic effect is a promising strategy for simultaneously solving water scarcity and energy crises. However, it is still a challenge to attain a high water evaporation rate and a strong output of electricity in a single device. Here, we report a three-dimensional (3D) hierarchical Cu2-xO@Cu foam for solar-driven harvesting of freshwater and electricity efficiently. The 3D Cu2-xO@Cu foam synthesized by chemical etching shows a rough surface and porous structure, making it have a hydrophilic surface, high light absorption performance, and excellent photothermal effect. For deionized water, the evaporation rate is as high as 3.03 kg m-2 h-1; meanwhile, the output voltage is 0.37 V under 1 solar irradiation. For real seawater, the evaporation rate decreases to about 2.48 kg m-2 h-1, the output voltage increases to 0.41 V, and the maximum output power density is 9.47 µW cm-2. Both the water evaporation and power generation performance are very competitive. Outdoor experiments demonstrate that the 3D hierarchical Cu2-xO@Cu foam can desalinate seawater, while generating electricity continuously.

13.
JMIR Public Health Surveill ; 10: e56059, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39316790

RESUMEN

Background: Particulate matter (PM), which affects respiratory health, has been well documented; however, substantial evidence from large cohorts is still limited, particularly in highly polluted countries and for PM1. Objective: Our objective was to examine the potential causal links between long-term exposure to PMs (PM2.5, PM10, and more importantly, PM1) and respiratory mortality. Methods: A total of 580,757 participants from the Guangzhou area, China, were recruited from 2009 to 2015 and followed up through 2020. The annual average concentrations of PMs at a 1-km spatial resolution around the residential addresses were estimated using validated spatiotemporal models. The marginal structural Cox model was used to estimate the associations of PM exposure with respiratory mortality, accounting for time-varying PM exposure. Results were stratified by demographics and lifestyle behaviors factors. Results: Among the participants, the mean age was 48.33 (SD 17.55) years, and 275,676 (47.47%) of them were men. During the follow-up period, 7260 deaths occurred due to respiratory diseases. The annual average concentrations of PM1, PM2.5, and PM10 showed a declining trend during the follow-up period. After adjusting for confounders, a 6.6% (95% CI 5.6%-7.6%), 4.2% (95% CI 3.6%-4.7%), and 4.0% (95% CI 3.6%-4.5%) increase in the risk of respiratory mortality was observed following each 1-µg/m3 increase in concentrations of PM1, PM2.5, and PM10, respectively. In addition, older participants, nonsmokers, participants with higher exercise frequency, and those exposed to a lower normalized difference vegetation index tended to be more susceptible to the effects of PMs. Furthermore, participants in the low-exposure group tended to be at a 7.6% and 2.7% greater risk of respiratory mortality following PM1 and PM10 exposure, respectively, compared to the entire cohort. Conclusions: This cohort study provides causal clues of the respiratory impact of long-term ambient PM exposure, indicating that PM reduction efforts may continuously benefit the population's respiratory health.


Asunto(s)
Exposición a Riesgos Ambientales , Material Particulado , Enfermedades Respiratorias , Humanos , Material Particulado/análisis , Material Particulado/efectos adversos , China/epidemiología , Masculino , Femenino , Persona de Mediana Edad , Estudios de Cohortes , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Adulto , Enfermedades Respiratorias/mortalidad , Anciano , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/efectos adversos , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis
14.
Zhen Ci Yan Jiu ; 49(8): 851-857, 2024 Aug 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-39318315

RESUMEN

MicroRNAs play an important role in the occurrence and development of ischemic stroke (IS). A lot of researches have shown that acupuncture intervention can improve IS-induced neural dysfunction by regulating miRNA. In the present paper, we summarized the current progress of researches on the mechanisms of acupuncture underlying improvement of IS via regulation of miRNA from 1) promoting angiogenesis and increasing cerebral blood flow, 2) inhibiting inflammatory response, 3) maintaining blood-brain barrier homeostasis and relieving brain edema, 4) regulating programmed cell death, 5) promoting neuron regeneration, and 6) improving synaptic plasticity. These miRNA -related mechanisms may provide a reference for the follow-up research .


Asunto(s)
Terapia por Acupuntura , Accidente Cerebrovascular Isquémico , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Accidente Cerebrovascular Isquémico/terapia , Accidente Cerebrovascular Isquémico/genética , Accidente Cerebrovascular Isquémico/metabolismo , Animales , Isquemia Encefálica/terapia , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Barrera Hematoencefálica/metabolismo
15.
Plant Dis ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39320370

RESUMEN

Pantoea ananatis is a bacterium commonly found in various agronomic crops and agricultural pests. In this study, we present findings on a genome-reduced strain of P. ananatis, known as Lstr, which was initially isolated from Laodelphax striatellus (small brown rice planthopper, SBPH). We identified Lstr as a plant pathogen causing disease in rice using Koch's postulates. The pathogenicity of Lstr on rice is comparable to that of Xanthomonas oryzae pv. oryzae, the main causative agent of rice bacterial blight. Through a series of experiments involving live insects, molecular investigations, and microscopy, we find that Lstr can accumulate within SBPH. Subsequently, Lstr can be transmitted from SBPH to rice plants, resulting in leaf blight, and can also be transmitted to other SBPH individuals. Collectively, our results suggest that SBPH serves as a vector for P. ananatis Lstr in rice plants. P. ananatis may encounter susceptible insect populations and become endemic through horizontal transmission from these insects. This could also be valuable for predicting future occurrences of bacterial leaf blight in rice and other crops caused by P. ananatis.

16.
Theor Appl Genet ; 137(10): 232, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39320516

RESUMEN

KEY MESSAGE: A major and stable QTL for sterile florets per spike and sterile florets per spikelet was identified, it was mapped within a 2.22-Mb interval on chromosome 5AL, and the locus was validated using two segregating populations with different genetic backgrounds. Both the number of fertile florets per spike (FFS) and the number of sterile florets per spike (SFS) significantly influence the final yield of wheat (Triticum aestivum L.), and a trade-off theoretically exists between them. To enhance crop yield, wheat breeders have historically concentrated on easily measurable traits such as FFS, spikelets per spike, and spike length. Other traits of agronomic importance, including SFS and sterile florets per spikelet (SFPs), have been largely overlooked. In the study, reported here, genetic bases of SFS and SFPs were investigated based on the assessment of a population of recombinant inbred lines (RILs) population. The RIL population was developed by crossing a spontaneous mutant with higher SFS (msf) with the cultivar Chuannong 16. A total of 10 quantitative trait loci (QTL) were identified, with QSFS.sau-MC-5A for SFS and QSFPs.sau-MC-5A for SFPs being the major and stable ones, and they were co-located on the long arm of chromosome 5A. The locus was located within a 2.22-Mb interval, and it was further validated in two additional populations based on a tightly linked Kompetitive Allele-Specific PCR (KASP) marker, K_sau_5A_691403852. Expression differences and promoter sequence variations were observed between the parents for both TraesCS5A03G1247300 and TraesCS5A03G1250300. The locus of QSFS.sau-MC-5A/QSFPs.sau-MC-5A showed a significantly positive correlation with spike length, florets in the middle spikelet, and total florets per spike, but it showed no correlation with either kernel number per spike (KNS) or kernel weight per spike. Appropriate nitrogen fertilizer application led to reduced SFS and increased KNS, supporting results from previous reports on the positive effect of nitrogen fertilizer on wheat spike and floret development. Based on these results, we propose a promising approach for breeding wheat cultivars with multiple fertile florets per spike, which could increase the number of kernels per spike and potentially improve yield. Collectively, these findings will facilitate further fine mapping of QSFS.sau-MC-5A/QSFPs.sau-MC-5A and be instrumental in strategies to increase KNS, thereby enhancing wheat yield.


Asunto(s)
Mapeo Cromosómico , Fenotipo , Sitios de Carácter Cuantitativo , Triticum , Triticum/genética , Triticum/crecimiento & desarrollo , Flores/genética , Flores/crecimiento & desarrollo , Infertilidad Vegetal/genética , Fitomejoramiento , Cromosomas de las Plantas/genética , Genes de Plantas , Marcadores Genéticos , Ligamiento Genético , Cruzamientos Genéticos
17.
Antioxidants (Basel) ; 13(9)2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39334805

RESUMEN

This study investigates the impact of propylene glycol (PRG) on ketotic cows, focusing on alleviating oxidative stress and enhancing immunity through modulating amino acid and lipid metabolism. Ketosis, a prevalent metabolic disease in dairy cows, negatively affects productivity and health. PRG, known for its gluconeogenic properties, was administered to cows with ketosis daily for three days and compared to an untreated group. Serum samples were taken to measure the biochemical parameters, and metabolomic and lipidomic analyses were performed with ultra-high-performance liquid chromatography-mass spectrometry. The results showed significant reductions in serum non-esterified fatty acids, beta-hydroxybutyrate, and C-reactive protein levels, alongside increased glucose, anti-inflammatory factor interleukin-10, superoxide dismutase, and glutathione peroxidase activities. Metabolomic and lipidomic analyses revealed significant alterations, including increased levels of glucogenic amino acids like glutamate and proline, and decreased levels of ceramide species. A pathway analysis indicated that PRG affects multiple metabolic pathways, including alanine, aspartate, glutamate metabolism, and sphingolipid metabolism. These findings suggest that PRG not only mitigates oxidative stress, but also enhances immune function by restoring metabolic homeostasis. This study provides valuable insights into the biochemical mechanisms underlying PRG's therapeutic effects, offering potential strategies for the effective management and treatment of ketosis in dairy cows.

18.
Biomolecules ; 14(9)2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39334919

RESUMEN

Deranged gut microbiota can release increased levels of uremic toxins leading to exacerbated kidney injury. In diabetic kidney disease (DKD), phenyl sulfate (PS) derived from tyrosine catabolism by gut microbiota has been demonstrated to be both an early diagnostic marker and a therapeutic target. In this perspective article, we summarize PS generation pathways and recent findings on PS and kidney injury in DKD. Increasing evidence has shown that the underlying mechanisms of PS-induced kidney injury mainly involve oxidative stress, redox imbalance, and mitochondrial dysfunction, which all may be targeted to attenuate PS-induced kidney injury. For future research directions, we think that a deeper understanding of the pathogenic role of PS in kidney injury using a variety of diabetic animal models should be investigated. Moreover, we also suggest beneficial approaches that could be used to mitigate the deleterious effect of PS on the kidney. These approaches include caloric restriction, tyrosine restriction, and administration of ketogenic drugs, ketogenic diets or natural products; all of which should be conducted under obese and diabetic conditions.


Asunto(s)
Nefropatías Diabéticas , Microbioma Gastrointestinal , Tirosina , Nefropatías Diabéticas/metabolismo , Tirosina/metabolismo , Humanos , Animales , Estrés Oxidativo
19.
Foods ; 13(18)2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39335939

RESUMEN

This study aimed to analyze the structure of polysaccharides from eight different Dendrobium species and their protective effects on gastric mucosa. Ultraviolet (UV) analysis showed that the contents of eight polysaccharides ranged from 51.89 ± 6.91% to 80.57 ± 11.63%; the degree of acetylation ranged from 0.17 ± 0.03 to 0.48 ± 0.03. High-performance liquid chromatography (HPLC) results showed that these polysaccharides were mainly composed of mannose (Man) and glucose (Glc) with a small amount of galactose (Gal) and arabinose (Ara), and the monosaccharide ratios of different Dendrobium species were different. High-performance size exclusion chromatography-multi angle light scattering-refractive index detector (HPSEC-MALS-RID) showed that the molecular weight (Mw) of all Dendrobium polysaccharides was >1 × 105 Da; D. huoshanense had the lowest molecular weight. Subsequently, an ethanol injured GES-1 cell model was constructed to evaluate the gastric mucosal protective potential of polysaccharides from eight different Dendrobium species. The results showed that the protective effect of the low concentration 50 µg/mL DHP treatment group was similar to that of the control group (p > 0.05), and the cell viability could reach 97.32% of that of the control group. Based on the polysaccharide composition, different kinds of Dendrobium have different degrees of migration and repair effects on GES-1 damaged cells, and the effect of DHP is slightly better than that of other varieties (83.13 ± 1.05%). Additionally, Dendrobium polysaccharides alleviated ethanol-induced oxidative stress and inflammatory response in gastric mucosal cells by enhancing the activity of antioxidant enzymes (superoxide dismutase, glutathione peroxidase, catalase) and reducing the levels of malondialdehyde and reactive oxygen species. Overall, DHP can most effectively protect gastric mucosa. These findings enhance our understanding of the relationship between the structure and biological activity of Dendrobium polysaccharides, providing a foundation for the quality control of Dendrobium. Furthermore, these findings offer theoretical support for the development of Dendrobium polysaccharides as nutraceuticals to treat digestive system diseases.

20.
World Neurosurg ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39243971

RESUMEN

BACKGROUND: Dynamic functional network connectivity (dFNC) captures temporal variations in functional connectivity during magnetic resonance imaging acquisition. However, the neural mechanisms driving dFNC alterations in the brain networks of patients with acute incomplete cervical cord injury (AICCI) remain unclear. METHODS: This study included 16 AICCI patients and 16 healthy controls. Initially, independent component analysis was employed to extract whole-brain independent components from resting-state functional magnetic resonance imaging data. Subsequently, a sliding time window approach, combined with k-means clustering, was used to estimate dFNC states for each participant. Finally, a correlation analysis was conducted to examine the association between sensorimotor dysfunction scores in AICCI patients and the temporal characteristics of dFNC. RESULTS: Independent component analysis was employed to extract 26 whole-brain independent components. Subsequent dynamic analysis identified 4 distinct connectivity states across the entire cohort. Notably, AICCI patients demonstrated a significant preference for State 3 compared to healthy controls, as evidenced by a higher frequency and longer duration spent in this state. Conversely, State 4 exhibited a reduced frequency and shorter dwell time in AICCI patients. Moreover, correlation analysis revealed a positive association between sensorimotor dysfunction and both the mean dwell time and the fraction of time spent in State 3. CONCLUSIONS: Patients with AICCI demonstrate abnormal connectivity within dFNC states, and the temporal characteristics of dFNC are associated with sensorimotor dysfunction scores. These findings highlight the potential of dFNC as a sensitive biomarker for detecting network functional changes in AICCI patients, providing valuable insights into the dynamic alterations in brain connectivity related to sensorimotor dysfunction in this population.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...