Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Front Microbiol ; 13: 824834, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35250940

RESUMEN

In times of climate change, practicing sustainable, climate-resilient, and productive agriculture is of primordial importance. Compost from different resources, now treated as wastes, could be one form of sustainable fertilizer creating a resilience of agriculture to the adverse effects of climate change. However, the safety of the produced compost regarding human pathogens, pharmaceuticals, and related resistance genes must be considered. We have assessed the effect of thermophilic composting of dry toilet contents, green cuttings, and straw, with and without biochar, on fecal indicators, the bacterial community, and antibiotic resistance genes (ARGs). Mature compost samples were analyzed regarding fecal indicator organisms, revealing low levels of Escherichia coli that are in line with German regulations for fertilizers. However, one finding of Salmonella spp. exceeded the threshold value. Cultivation of bacteria from the mature compost resulted in 200 isolates with 36.5% of biosafety level 2 (BSL-2) species. The majority is known as opportunistic pathogens that likewise occur in different environments. A quarter of the isolated BSL-2 strains exhibited multiresistance to different classes of antibiotics. Molecular analysis of total DNA before and after composting revealed changes in bacterial community composition and ARGs. 16S rRNA gene amplicon sequencing showed a decline of the two most abundant phyla Proteobacteria (start: 36-48%, end: 27-30%) and Firmicutes (start: 13-33%, end: 12-16%), whereas the abundance of Chloroflexi, Gemmatimonadetes, and Planctomycetes rose. Groups containing many human pathogens decreased during composting, like Pseudomonadales, Bacilli with Bacillus spp., or Staphylococcaceae and Enterococcaceae. Gene-specific PCR showed a decline in the number of detectable ARGs from 15 before to 8 after composting. The results reveal the importance of sufficiently high temperatures lasting for a sufficiently long period during the thermophilic phase of composting for reducing Salmonella to levels matching the criteria for fertilizers. However, most severe human pathogens that were targeted by isolation conditions were not detected. Cultivation-independent analyses also indicated a decline in bacterial orders comprising many pathogenic bacteria, as well as a decrease in ARGs. In summary, thermophilic composting could be a promising approach for producing hygienically safe organic fertilizer from ecological sanitation.

2.
FEMS Microbiol Ecol ; 92(1)2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26656065

RESUMEN

Clinically relevant extended-spectrum beta-lactamase (ESBL)-producing multi-resistant Escherichia coli have been on the rise for years. Initially restricted to mostly a clinical context, recent findings prove their prevalence in extraclinical settings independent of the original occurrence of antimicrobial resistance in the environment. To get further insights into the complex ecology of potentially clinically relevant ESBL-producing E. coli, 24 isolates from wild birds in Berlin, Germany, and 40 ESBL-producing human clinical E. coli isolates were comparatively analyzed. Isolates of ST410 occurred in both sample groups (six). In addition, three ESBL-producing E. coli isolates of ST410 from environmental dog feces and one clinical dog isolate were included. All 10 isolates were clonally analyzed showing almost identical macrorestriction patterns. They were chosen for whole-genome sequencing revealing that the whole-genome content of these 10 E. coli isolates showed a very high genetic similarity, differing by low numbers of single nucleotide polymorphisms only. This study gives initial evidence for a recent interspecies transmission of a new successful clone of ST410 E. coli between wildlife, humans, companion animals and the environment. The results underline the zoonotic potential of clinically relevant multi-resistant bacteria found in the environment as well as the mandatory nature of the 'One Health' approach.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple/genética , Infecciones por Escherichia coli/transmisión , Escherichia coli/efectos de los fármacos , Escherichia coli/aislamiento & purificación , beta-Lactamasas/genética , Animales , Antígenos Bacterianos/genética , Técnicas de Tipificación Bacteriana , Secuencia de Bases , Aves/microbiología , Perros , Escherichia coli/genética , Infecciones por Escherichia coli/microbiología , Heces/microbiología , Alemania , Humanos , Tipificación de Secuencias Multilocus , Antígenos O/genética , Pandemias , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ADN , beta-Lactamasas/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...