Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Am J Med Genet A ; 194(1): 17-30, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37743782

RESUMEN

The collection of known genetic etiologies of neurodevelopmental disorders continues to increase, including several syndromes associated with defects in zinc finger protein transcription factors (ZNFs) that vary in clinical severity from mild learning disabilities and developmental delay to refractory seizures and severe autism spectrum disorder. Here we describe a new neurodevelopmental disorder associated with variants in ZBTB47 (also known as ZNF651), which encodes zinc finger and BTB domain-containing protein 47. Exome sequencing (ES) was performed for five unrelated patients with neurodevelopmental disorders. All five patients are heterozygous for a de novo missense variant in ZBTB47, with p.(Glu680Gly) (c.2039A>G) detected in one patient and p.(Glu477Lys) (c.1429G>A) identified in the other four patients. Both variants impact conserved amino acid residues. Bioinformatic analysis of each variant is consistent with pathogenicity. We present five unrelated patients with de novo missense variants in ZBTB47 and a phenotype characterized by developmental delay with intellectual disability, seizures, hypotonia, gait abnormalities, and variable movement abnormalities. We propose that these variants in ZBTB47 are the basis of a new neurodevelopmental disorder.


Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Trastornos del Movimiento , Trastornos del Neurodesarrollo , Niño , Humanos , Discapacidades del Desarrollo/genética , Hipotonía Muscular/genética , Trastornos del Neurodesarrollo/genética , Discapacidad Intelectual/genética , Convulsiones/genética , Fenotipo , Marcha
2.
Sci Adv ; 6(49)2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33268356

RESUMEN

Although somatic mutations in Histone 3.3 (H3.3) are well-studied drivers of oncogenesis, the role of germline mutations remains unreported. We analyze 46 patients bearing de novo germline mutations in histone 3 family 3A (H3F3A) or H3F3B with progressive neurologic dysfunction and congenital anomalies without malignancies. Molecular modeling of all 37 variants demonstrated clear disruptions in interactions with DNA, other histones, and histone chaperone proteins. Patient histone posttranslational modifications (PTMs) analysis revealed notably aberrant local PTM patterns distinct from the somatic lysine mutations that cause global PTM dysregulation. RNA sequencing on patient cells demonstrated up-regulated gene expression related to mitosis and cell division, and cellular assays confirmed an increased proliferative capacity. A zebrafish model showed craniofacial anomalies and a defect in Foxd3-derived glia. These data suggest that the mechanism of germline mutations are distinct from cancer-associated somatic histone mutations but may converge on control of cell proliferation.


Asunto(s)
Histonas , Enfermedades Neurodegenerativas , Animales , Factores de Transcripción Forkhead/genética , Mutación de Línea Germinal , Histonas/genética , Histonas/metabolismo , Humanos , Enfermedades Neurodegenerativas/genética , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
3.
Hum Mutat ; 41(3): 591-599, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31821646

RESUMEN

RHOA is a member of the Rho family of GTPases that are involved in fundamental cellular processes including cell adhesion, migration, and proliferation. RHOA can stimulate the formation of stress fibers and focal adhesions and is a key regulator of actomyosin dynamics in various tissues. In a Genematcher-facilitated collaboration, we were able to identify four unrelated individuals with a specific phenotype characterized by hypopigmented areas of the skin, dental anomalies, body asymmetry, and limb length discrepancy due to hemihypotrophy of one half of the body, as well as brain magnetic resonance imaging (MRI) anomalies. Using whole-exome and ultra-deep amplicon sequencing and comparing genomic data of affected and unaffected areas of the skin, we discovered that all four individuals carried the identical RHOA missense variant, c.139G>A; p.Glu47Lys, in a postzygotic state. Molecular modeling and in silico analysis of the affected p.Glu47Lys residue in RHOA indicated that this exchange is predicted to specifically alter the interaction of RHOA with its downstream effectors containing a PKN-type binding domain and thereby disrupts its ability to activate signaling. Our findings indicate that the recurrent postzygotic RHOA missense variant p.Glu47Lys causes a specific mosaic disorder in humans.


Asunto(s)
Alelos , Codón , Estudios de Asociación Genética , Variación Genética , Placa Neural/metabolismo , Fenotipo , Proteína de Unión al GTP rhoA/genética , Adolescente , Adulto , Encéfalo/anomalías , Encéfalo/diagnóstico por imagen , Niño , Preescolar , Femenino , Humanos , Imagen por Resonancia Magnética , Modelos Moleculares , Placa Neural/anomalías , Placa Neural/embriología , Conformación Proteica , Relación Estructura-Actividad , Adulto Joven , Proteína de Unión al GTP rhoA/química
4.
Genet Med ; 21(11): 2663, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31267042

RESUMEN

In the Acknowledgements section of the paper the authors neglected to mention that the study was supported by a grant from the National Human Genome Research Institute (NHGRI) UM1HG007301 (S.H., M.L.T.). In addition, the award of MD was associated with the authors Michelle L. Thompson and Susan Hiatt instead of PhD. The PDF and HTML versions of the Article have been modified accordingly.

5.
Genet Med ; 21(12): 2713-2722, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31155615

RESUMEN

PURPOSE: Mediator is a multiprotein complex that allows the transfer of genetic information from DNA binding proteins to the RNA polymerase II during transcription initiation. MED12L is a subunit of the kinase module, which is one of the four subcomplexes of the mediator complex. Other subunits of the kinase module have been already implicated in intellectual disability, namely MED12, MED13L, MED13, and CDK19. METHODS: We describe an international cohort of seven affected individuals harboring variants involving MED12L identified by array CGH, exome or genome sequencing. RESULTS: All affected individuals presented with intellectual disability and/or developmental delay, including speech impairment. Other features included autism spectrum disorder, aggressive behavior, corpus callosum abnormality, and mild facial morphological features. Three individuals had a MED12L deletion or duplication. The other four individuals harbored single-nucleotide variants (one nonsense, one frameshift, and two splicing variants). Functional analysis confirmed a moderate and significant alteration of RNA synthesis in two individuals. CONCLUSION: Overall data suggest that MED12L haploinsufficiency is responsible for intellectual disability and transcriptional defect. Our findings confirm that the integrity of this kinase module is a critical factor for neurological development.


Asunto(s)
Discapacidad Intelectual/genética , Complejo Mediador/genética , Complejo Mediador/metabolismo , Adolescente , Trastorno del Espectro Autista/genética , Niño , Preescolar , Discapacidades del Desarrollo/genética , Exoma/genética , Femenino , Mutación del Sistema de Lectura/genética , Humanos , Masculino , Mutación/genética , Eliminación de Secuencia/genética , Factores de Transcripción/genética , Adulto Joven
6.
Clin Case Rep ; 6(9): 1815-1817, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30214770

RESUMEN

We report the second known family affected by deafness-dystonia syndrome associated with loss of function of FITM2. Our patient is compound heterozygous for pathogenic FITM2 variants, while affected siblings in the first report were homozygous. This case provides evidence that this novel genetic disorder is associated with autosomal recessive inheritance.

7.
Eur J Hum Genet ; 26(9): 1294-1305, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29748569

RESUMEN

The NAA10-NAA15 complex (NatA) is an N-terminal acetyltransferase that catalyzes N-terminal acetylation of ~40% of all human proteins. N-terminal acetylation has several different roles in the cell, including altering protein stability and degradation, protein localization and protein-protein interactions. In recent years several X-linked NAA10 variants have been associated with genetic disorders. We have identified a previously undescribed NAA10 c.215T>C p.(Ile72Thr) variant in three boys from two unrelated families with a milder phenotypic spectrum in comparison to most of the previously described patients with NAA10 variants. These boys have development delay, intellectual disability, and cardiac abnormalities as overlapping phenotypes. Functional studies reveal that NAA10 Ile72Thr is destabilized, while binding to NAA15 most likely is intact. Surprisingly, the NatA activity of NAA10 Ile72Thr appears normal while its monomeric activity is decreased. This study further broadens the phenotypic spectrum associated with NAA10 deficiency, and adds to the evidence that genotype-phenotype correlations for NAA10 variants are much more complex than initially anticipated.


Asunto(s)
Cardiomiopatía Hipertrófica/genética , Discapacidades del Desarrollo/genética , Discapacidad Intelectual/genética , Acetiltransferasa A N-Terminal/genética , Acetiltransferasa E N-Terminal/genética , Fenotipo , Cardiomiopatía Hipertrófica/patología , Preescolar , Discapacidades del Desarrollo/patología , Estabilidad de Enzimas , Células HeLa , Humanos , Lactante , Discapacidad Intelectual/patología , Masculino , Mutación , Acetiltransferasa A N-Terminal/química , Acetiltransferasa A N-Terminal/metabolismo , Acetiltransferasa E N-Terminal/química , Acetiltransferasa E N-Terminal/metabolismo , Unión Proteica , Síndrome
8.
JIMD Rep ; 37: 85-97, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28324326

RESUMEN

Fabry disease (FD) is a pan-ethnic, X-linked, progressive lysosomal storage disorder caused by pathogenic mutations in the GLA gene. Published case reports and abstracts suggest that decreased reproductive fitness may occur in males with FD. In order to understand the impact of FD on reproductive fitness and increase the accuracy of reproductive genetic counseling, this study examines a large, multi-centered population of individuals with FD to determine if males have reduced reproductive fitness. Study data were collected on 376 patients through two, gender-specific surveys distributed across the United States and Canada. The number of biological live-born children among individuals with FD was compared to statistics from the general population. Information was also collected on reduced sperm count, depression, pain, use of assisted reproductive technology, and reproductive choice. On average, females affected by FD had more biological live-born children (1.8) than males affected by FD (1.1). However, males affected by FD had an increased mean number of biological children (1.1) compared to the mean number of biological children fathered by men in the United States (0.9). Sixteen of the 134 males with FD reported oligospermia, which suggests that an infertility work up may be indicated for males having difficulty impregnating their partners. In our large multicenter sample, males and females with FD do not exhibit reduced reproductive fitness; on average they have more biological children than the general population in the United States. This information should assist clinicians in providing accurate reproductive genetic counseling and treatment for individuals with FD.

9.
Am J Hum Genet ; 98(5): 1001-1010, 2016 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-27108799

RESUMEN

Whole-exome sequencing of 13 individuals with developmental delay commonly accompanied by abnormal muscle tone and seizures identified de novo missense mutations enriched within a sub-region of GNB1, a gene encoding the guanine nucleotide-binding protein subunit beta-1, Gß. These 13 individuals were identified among a base of 5,855 individuals recruited for various undiagnosed genetic disorders. The probability of observing 13 or more de novo mutations by chance among 5,855 individuals is very low (p = 7.1 × 10(-21)), implicating GNB1 as a genome-wide-significant disease-associated gene. The majority of these 13 mutations affect known Gß binding sites, which suggests that a likely disease mechanism is through the disruption of the protein interface required for Gα-Gßγ interaction (resulting in a constitutively active Gßγ) or through the disruption of residues relevant for interaction between Gßγ and certain downstream effectors (resulting in reduced interaction with the effectors). Strikingly, 8 of the 13 individuals recruited here for a neurodevelopmental disorder have a germline de novo GNB1 mutation that overlaps a set of five recurrent somatic tumor mutations for which recent functional studies demonstrated a gain-of-function effect due to constitutive activation of G protein downstream signaling cascades for some of the affected residues.


Asunto(s)
Discapacidades del Desarrollo/etiología , Subunidades beta de la Proteína de Unión al GTP/genética , Mutación de Línea Germinal/genética , Discapacidad Intelectual/etiología , Hipotonía Muscular/etiología , Convulsiones/etiología , Adolescente , Adulto , Niño , Preescolar , Discapacidades del Desarrollo/patología , Exoma/genética , Femenino , Subunidades beta de la Proteína de Unión al GTP/química , Humanos , Lactante , Discapacidad Intelectual/patología , Masculino , Hipotonía Muscular/patología , Fenotipo , Conformación Proteica , Convulsiones/patología , Transducción de Señal , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA