Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant J ; 118(4): 1036-1053, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38289468

RESUMEN

In plants so-called plasma membrane intrinsic proteins (PIPs) are major water channels governing plant water status. Membrane trafficking contributes to functional regulation of major PIPs and is crucial for abiotic stress resilience. Arabidopsis PIP2;1 is rapidly internalised from the plasma membrane in response to high salinity to regulate osmotic water transport, but knowledge of the underlying mechanisms is fragmentary. Here we show that PIP2;1 occurs in complex with SYNTAXIN OF PLANTS 132 (SYP132) together with the plasma membrane H+-ATPase AHA1 as evidenced through in vivo and in vitro analysis. SYP132 is a multifaceted vesicle trafficking protein, known to interact with AHA1 and promote endocytosis to impact growth and pathogen defence. Tracking native proteins in immunoblot analysis, we found that salinity stress enhances SYP132 interactions with PIP2;1 and PIP2;2 isoforms to promote redistribution of the water channels away from the plasma membrane. Concurrently, AHA1 binding within the SYP132-complex was significantly reduced under salinity stress and increased the density of AHA1 proteins at the plasma membrane in leaf tissue. Manipulating SYP132 function in Arabidopsis thaliana enhanced resilience to salinity stress and analysis in heterologous systems suggested that the SNARE influences PIP2;1 osmotic water permeability. We propose therefore that SYP132 coordinates AHA1 and PIP2;1 abundance at the plasma membrane and influences leaf hydraulics to regulate plant responses to abiotic stress signals.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Qa-SNARE , Estrés Salino , Acuaporinas/metabolismo , Acuaporinas/genética , Arabidopsis/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Transporte de Proteínas , ATPasas de Translocación de Protón/metabolismo , ATPasas de Translocación de Protón/genética , Proteínas Qa-SNARE/metabolismo , Proteínas Qa-SNARE/genética , Proteínas SNARE/metabolismo , Proteínas SNARE/genética
2.
Nat Plants ; 8(11): 1262-1274, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36266492

RESUMEN

Stomata of plant leaves open to enable CO2 entry for photosynthesis and close to reduce water loss via transpiration. Compared with photosynthesis, stomata respond slowly to fluctuating light, reducing assimilation and water use efficiency. Efficiency gains are possible without a cost to photosynthesis if stomatal kinetics can be accelerated. Here we show that clustering of the GORK channel, which mediates K+ efflux for stomatal closure in the model plant Arabidopsis, arises from binding between the channel voltage sensors, creating an extended 'sensory antenna' for channel gating. Mutants altered in clustering affect channel gating to facilitate K+ flux, accelerate stomatal movements and reduce water use without a loss in biomass. Our findings identify the mechanism coupling channel clustering with gating, and they demonstrate the potential for engineering of ion channels native to the guard cell to enhance stomatal kinetics and improve water use efficiency without a cost in carbon fixation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Estomas de Plantas/metabolismo , Agua/metabolismo , Cinética , Fotosíntesis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo
3.
Plant Physiol ; 189(3): 1639-1661, 2022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35348763

RESUMEN

The vesicle trafficking SYNTAXIN OF PLANTS132 (SYP132) drives hormone-regulated endocytic traffic to suppress the density and function of plasma membrane (PM) H+-ATPases. In response to bacterial pathogens, it also promotes secretory traffic of antimicrobial pathogenesis-related (PR) proteins. These seemingly opposite actions of SYP132 raise questions about the mechanistic connections between the two, likely independent, membrane trafficking pathways intersecting plant growth and immunity. To study SYP132 and associated trafficking of PM H+-ATPase 1 (AHA1) and PATHOGENESIS-RELATED PROTEIN1 (PR1) during pathogenesis, we used the virulent Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) bacteria for infection of Arabidopsis (Arabidopsis thaliana) plants. SYP132 overexpression suppressed bacterial infection in plants through the stomatal route. However, bacterial infection was enhanced when bacteria were infiltrated into leaf tissue to bypass stomatal defenses. Tracking time-dependent changes in native AHA1 and SYP132 abundance, cellular distribution, and function, we discovered that bacterial pathogen infection triggers AHA1 and SYP132 internalization from the plasma membrane. AHA1 bound to SYP132 through its regulatory SNARE Habc domain, and these interactions affected PM H+-ATPase traffic. Remarkably, using the Arabidopsis aha1 mutant, we discovered that AHA1 is essential for moderating SYP132 abundance and associated secretion of PR1 at the plasma membrane for pathogen defense. Thus, we show that during pathogenesis SYP132 coordinates AHA1 with opposing effects on the traffic of AHA1 and PR1.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Enfermedades de las Plantas , ATPasas de Translocación de Protón , Proteínas Qa-SNARE , Antiinfecciosos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , ATPasas de Translocación de Protón/genética , ATPasas de Translocación de Protón/metabolismo , Pseudomonas syringae , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Proteínas SNARE/genética , Proteínas SNARE/metabolismo
4.
Plant Physiol ; 181(3): 1096-1113, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31548266

RESUMEN

Cell expansion requires that ion transport and secretory membrane traffic operate in concert. Evidence from Arabidopsis (Arabidopsis thaliana) indicates that such coordination is mediated by physical interactions between subsets of so-called SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, which drive the final stages of vesicle fusion, and K+ channels, which facilitate uptake of the cation to maintain cell turgor pressure as the cell expands. However, the sequence of SNARE binding with the K+ channels and its interweaving within the events of SNARE complex assembly for exocytosis remains unclear. We have combined protein-protein interaction and electrophysiological analyses to resolve the binding interactions of the hetero-oligomeric associations. We find that the RYxxWE motif, located within the voltage sensor of the K+ channels, is a nexus for multiple SNARE interactions. Of these, K+ channel binding and its displacement of the regulatory protein SEC11 is critical to prime the Qa-SNARE SYP121. Our results indicate a stabilizing role for the Qbc-SNARE SNAP33 in the Qa-SNARE transition to SNARE complex assembly with the R-SNARE VAMP721. They also suggest that, on its own, the R-SNARE enters an anomalous binding mode with the channels, possibly as a fail-safe measure to ensure a correct binding sequence. Thus, we suggest that SYP121 binding to the K+ channels serves the role of a primary trigger to initiate assembly of the secretory machinery for exocytosis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Ciclo Celular/metabolismo , Canales de Potasio/metabolismo , Proteínas SNARE/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Cationes/metabolismo , Proteínas de Ciclo Celular/genética , Membrana Celular/metabolismo , Exocitosis , Canales de Potasio/genética , Transporte de Proteínas , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Proteínas SNARE/genética
5.
Plant Physiol ; 178(4): 1679-1688, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30348815

RESUMEN

SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins drive vesicle fusion and contribute to homoeostasis, pathogen defense, cell expansion, and growth in plants. In Arabidopsis (Arabidopsis thaliana), two homologous Qa-SNAREs, SYNTAXIN OF PLANTS121 (SYP121) and SYP122, facilitate the majority of secretory traffic to the plasma membrane, and the single mutants are indistinguishable from wild-type plants in the absence of stress, implying a redundancy in their functions. Nonetheless, several studies suggest differences among the secretory cargo of these SNAREs. To address this issue, we conducted an analysis of the proteins secreted by cultured wild-type, syp121, and syp122 mutant Arabidopsis seedlings. Here, we report that a number of cargo proteins were associated differentially with traffic mediated by SYP121 and SYP122. The data also indicated important overlaps between the SNAREs. Therefore, we conclude that the two Qa-SNAREs mediate distinct but complementary secretory pathways during vegetative plant growth.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Qa-SNARE/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Espectrometría de Masas , Mutación , Plantas Modificadas Genéticamente , Transporte de Proteínas , Proteínas Qa-SNARE/genética , Reproducibilidad de los Resultados
6.
Plant Cell Environ ; 41(11): 2668-2677, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29940699

RESUMEN

Vesicle traffic is tightly coordinated with ion transport for plant cell expansion through physical interactions between subsets of vesicle-trafficking (so-called SNARE) proteins and plasma membrane Kv channels, including the archetypal inward-rectifying K+ channel, KAT1 of Arabidopsis. Ion channels open and close rapidly over milliseconds, whereas vesicle fusion events require many seconds. Binding has been mapped to conserved motifs of both the Kv channels and the SNAREs, but knowledge of the temporal kinetics of their interactions, especially as it might relate to channel gating and its coordination with vesicle fusion remains unclear. Here, we report that the SNARE SYP121 promotes KAT1 gating through a persistent interaction that alters the stability of the channel, both in its open and closed states. We show, too, that SYP121 action on the channel open state requires SNARE anchoring in the plasma membrane. Our findings indicate that SNARE binding confers a conformational bias that encompasses the microscopic kinetics of channel gating, with leverage applied through the SNARE anchor in favour of the open channel.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Activación del Canal Iónico , Canales de Potasio de Rectificación Interna/fisiología , Potasio/metabolismo , Proteínas Qa-SNARE/fisiología , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Activación del Canal Iónico/fisiología , Canales de Potasio de Rectificación Interna/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas SNARE/metabolismo , Proteínas SNARE/fisiología
7.
Trends Plant Sci ; 22(1): 81-95, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27818003

RESUMEN

Control of cell volume and osmolarity is central to cellular homeostasis in all eukaryotes. It lies at the heart of the century-old problem of how plants regulate turgor, mineral and water transport. Plants use strongly electrogenic H+-ATPases, and the substantial membrane voltages they foster, to drive solute accumulation and generate turgor pressure for cell expansion. Vesicle traffic adds membrane surface and contributes to wall remodelling as the cell grows. Although a balance between vesicle traffic and ion transport is essential for cell turgor and volume control, the mechanisms coordinating these processes have remained obscure. Recent discoveries have now uncovered interactions between conserved subsets of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins that drive the final steps in secretory vesicle traffic and ion channels that mediate in inorganic solute uptake. These findings establish the core of molecular links, previously unanticipated, that coordinate cellular homeostasis and cell expansion.


Asunto(s)
Transporte Biológico/fisiología , Proteínas de Plantas/metabolismo , Transporte Biológico/genética , Fenómenos Fisiológicos de las Plantas , Proteínas de Plantas/genética , Canales de Potasio/genética , Canales de Potasio/metabolismo , Unión Proteica , Proteínas SNARE/genética , Proteínas SNARE/metabolismo
8.
Plant Physiol ; 173(1): 536-551, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27821719

RESUMEN

Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins play a major role in membrane fusion and contribute to cell expansion, signaling, and polar growth in plants. The SNARE SYP121 of Arabidopsis thaliana that facilitates vesicle fusion at the plasma membrane also binds with, and regulates, K+ channels already present at the plasma membrane to affect K+ uptake and K+-dependent growth. Here, we report that its cognate partner VAMP721, which assembles with SYP121 to drive membrane fusion, binds to the KAT1 K+ channel via two sites on the protein, only one of which contributes to channel-gating control. Binding to the VAMP721 SNARE domain suppressed channel gating. By contrast, interaction with the amino-terminal longin domain conferred specificity on VAMP721 binding without influencing gating. Channel binding was defined by a linear motif within the longin domain. The SNARE domain is thought to wrap around this structure when not assembled with SYP121 in the SNARE complex. Fluorescence lifetime analysis showed that mutations within this motif, which suppressed channel binding and its effects on gating, also altered the conformational displacement between the VAMP721 SNARE and longin domains. The presence of these two channel-binding sites on VAMP721, one also required for SNARE complex assembly, implies a well-defined sequence of events coordinating K+ uptake and the final stages of vesicle traffic. It suggests that binding begins with VAMP721, and subsequently with SYP121, thereby coordinating K+ channel gating during SNARE assembly and vesicle fusion. Thus, our findings also are consistent with the idea that the K+ channels are nucleation points for SNARE complex assembly.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Activación del Canal Iónico/fisiología , Canales de Potasio de Rectificación Interna/metabolismo , Proteínas R-SNARE/química , Proteínas R-SNARE/metabolismo , Secuencias de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Sitios de Unión , Fusión de Membrana , Canales de Potasio de Rectificación Interna/genética , Dominios Proteicos , Pliegue de Proteína , Proteínas Qa-SNARE/metabolismo , Proteínas R-SNARE/genética , Tirosina/química , Tirosina/metabolismo
9.
Methods Mol Biol ; 1311: 133-45, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25981470

RESUMEN

Mass spectrometry is a powerful tool for characterizing RNA. Here we describe a method for the identification and characterisation of crRNA using liquid chromatography interfaced with electrospray ionization mass spectrometry (LC ESI MS). The direct purification of crRNA from the Cascade-crRNA complex was performed using denaturing ion pair reverse phase chromatography. Following purification of the crRNA, the intact mass was determined by LC ESI MS. Using this approach, a significant reduction in metal ion adduct formation of the crRNA was observed. In addition, RNase mapping of the crRNA was performed using RNase digestion in conjunction with liquid chromatography tandem MS analysis. Using the intact mass of the crRNA, in conjunction with RNase mapping experiments enabled the identification and characterisation of the crRNA, providing further insight into crRNA processing in a number of type I CRISPR-Cas systems.


Asunto(s)
Cromatografía Liquida/métodos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ARN/análisis , ARN/genética , Espectrometría de Masa por Ionización de Electrospray/métodos , Cloroformo/química , Cromatografía Liquida/instrumentación , Desnaturalización de Ácido Nucleico , Fenol/química , ARN/química , ARN/aislamiento & purificación , Ribonucleasas/metabolismo , Espectrometría de Masa por Ionización de Electrospray/instrumentación , Jeringas
10.
Plant Cell ; 27(3): 675-94, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25747882

RESUMEN

SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins drive vesicle fusion in all eukaryotes and contribute to homeostasis, pathogen defense, cell expansion, and growth in plants. Two homologous SNAREs, SYP121 (=SYR1/PEN1) and SYP122, dominate secretory traffic to the Arabidopsis thaliana plasma membrane. Although these proteins overlap functionally, differences between SYP121 and SYP122 have surfaced, suggesting that they mark two discrete pathways for vesicular traffic. The SNAREs share primary cognate partners, which has made separating their respective control mechanisms difficult. Here, we show that the regulatory protein SEC11 (=KEULE) binds selectively with SYP121 to affect secretory traffic mediated by this SNARE. SEC11 rescued traffic block by dominant-negative (inhibitory) fragments of both SNAREs, but only in plants expressing the native SYP121. Traffic and its rescue were sensitive to mutations affecting SEC11 interaction with the N terminus of SYP121. Furthermore, the domain of SEC11 that bound the SYP121 N terminus was itself able to block secretory traffic in the wild type and syp122 but not in syp121 mutant Arabidopsis. Thus, SEC11 binds and selectively regulates secretory traffic mediated by SYP121 and is important for recycling of the SNARE and its cognate partners.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Fusión de Membrana , Proteínas Qa-SNARE/metabolismo , Vesículas Secretoras/metabolismo , Secuencia de Aminoácidos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Transporte Biológico , Proteínas Portadoras/química , Proteínas de Ciclo Celular , Proliferación Celular , Tamaño de la Célula , Citosol/metabolismo , Prueba de Complementación Genética , Inflorescencia/crecimiento & desarrollo , Modelos Biológicos , Datos de Secuencia Molecular , Mutación/genética , Péptidos/química , Péptidos/metabolismo , Epidermis de la Planta/citología , Unión Proteica , Proteínas Qa-SNARE/química , Proteínas Qa-SNARE/genética
11.
Nat Plants ; 1: 15108, 2015 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-27250541

RESUMEN

Growth in plants depends on ion transport for osmotic solute uptake and secretory membrane trafficking to deliver material for wall remodelling and cell expansion. The coordination of these processes lies at the heart of the question, unresolved for more than a century, of how plants regulate cell volume and turgor. Here we report that the SNARE protein SYP121 (SYR1/PEN1), which mediates vesicle fusion at the Arabidopsis plasma membrane, binds the voltage sensor domains (VSDs) of K(+) channels to confer a voltage dependence on secretory traffic in parallel with K(+) uptake. VSD binding enhances secretion in vivo subject to voltage, and mutations affecting VSD conformation alter binding and secretion in parallel with channel gating, net K(+) concentration, osmotic content and growth. These results demonstrate a new and unexpected mechanism for secretory control, in which a subset of plant SNAREs commandeer K(+) channel VSDs to coordinate membrane trafficking with K(+) uptake for growth.

12.
EMBO J ; 32(3): 385-94, 2013 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-23334296

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPR)-encoded immunity in Type I systems relies on the Cascade (CRISPR-associated complex for antiviral defence) ribonucleoprotein complex, which triggers foreign DNA degradation by an accessory Cas3 protein. To establish the mechanism for adaptive immunity provided by the Streptococcus thermophilus CRISPR4-Cas (CRISPR-associated) system (St-CRISPR4-Cas), we isolated an effector complex (St-Cascade) containing 61-nucleotide CRISPR RNA (crRNA). We show that St-Cascade, guided by crRNA, binds in vitro to a matching proto-spacer if a proto-spacer adjacent motif (PAM) is present. Surprisingly, the PAM sequence determined from binding analysis is promiscuous and limited to a single nucleotide (A or T) immediately upstream (-1 position) of the proto-spacer. In the presence of a correct PAM, St-Cascade binding to the target DNA generates an R-loop that serves as a landing site for the Cas3 ATPase/nuclease. We show that Cas3 binding to the displaced strand in the R-loop triggers DNA cleavage, and if ATP is present, Cas3 further degrades DNA in a unidirectional manner. These findings establish a molecular basis for CRISPR immunity in St-CRISPR4-Cas and other Type I systems.


Asunto(s)
Inmunidad Adaptativa/inmunología , ADN Helicasas/metabolismo , ARN Bacteriano/inmunología , Secuencias Repetitivas de Ácidos Nucleicos/inmunología , Ribonucleoproteínas/inmunología , Streptococcus thermophilus/inmunología , Adenosina Trifosfato/metabolismo , Secuencia de Bases , Cromatografía Líquida de Alta Presión , Clonación Molecular , División del ADN , Electroforesis en Gel de Gradiente Desnaturalizante , Ensayo de Cambio de Movilidad Electroforética , Técnicas In Vitro , Espectrometría de Masas , Datos de Secuencia Molecular , Plásmidos/metabolismo , ARN Bacteriano/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Ribonucleoproteínas/metabolismo , Colorantes de Rosanilina , Análisis de Secuencia de ADN , Streptococcus thermophilus/enzimología , Streptococcus thermophilus/virología
13.
Proc Natl Acad Sci U S A ; 108(25): 10092-7, 2011 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-21536913

RESUMEN

Prokaryotes have evolved multiple versions of an RNA-guided adaptive immune system that targets foreign nucleic acids. In each case, transcripts derived from clustered regularly interspaced short palindromic repeats (CRISPRs) are thought to selectively target invading phage and plasmids in a sequence-specific process involving a variable cassette of CRISPR-associated (cas) genes. The CRISPR locus in Pseudomonas aeruginosa (PA14) includes four cas genes that are unique to and conserved in microorganisms harboring the Csy-type (CRISPR system yersinia) immune system. Here we show that the Csy proteins (Csy1-4) assemble into a 350 kDa ribonucleoprotein complex that facilitates target recognition by enhancing sequence-specific hybridization between the CRISPR RNA and complementary target sequences. Target recognition is enthalpically driven and localized to a "seed sequence" at the 5' end of the CRISPR RNA spacer. Structural analysis of the complex by small-angle X-ray scattering and single particle electron microscopy reveals a crescent-shaped particle that bears striking resemblance to the architecture of a large CRISPR-associated complex from Escherichia coli, termed Cascade. Although similarity between these two complexes is not evident at the sequence level, their unequal subunit stoichiometry and quaternary architecture reveal conserved structural features that may be common among diverse CRISPR-mediated defense systems.


Asunto(s)
Secuencia de Bases , Escherichia coli , Sustancias Macromoleculares/metabolismo , Pseudomonas aeruginosa , ARN/genética , ARN/metabolismo , Inmunidad Adaptativa/genética , Inmunidad Adaptativa/inmunología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Escherichia coli/genética , Escherichia coli/inmunología , Sustancias Macromoleculares/química , Modelos Moleculares , Datos de Secuencia Molecular , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/inmunología
14.
Anal Chem ; 83(12): 4894-901, 2011 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-21539333

RESUMEN

Mass spectrometry has emerged as an increasingly powerful tool for the identification and characterization of nucleic acids, in particular RNA post-transcriptional modifications. High mass accuracy instrumentation is often required to discriminate between compositional isomers of oligonucleotides. We have used stable isotope labeling ((15)N) of E. coli RNA in conjunction with mass spectrometry analysis of the combined heavy- and light-labeled RNA for the identification and quantification of oligoribonucleotides and post-transcriptional modifications. The number of nitrogen atoms in the oligoribonucleotide and fragment ions can readily be determined using this approach, enabling the discrimination between potential compositional isomers without the requirement of high mass accuracy mass spectrometers. In addition, the identification of specific fragment ions in both the unlabeled and labeled oligoribonucleotides can be used to gain further confidence in the assignment of RNA post-transcriptional modifications. Using this approach we have identified a range of post-transcriptional modifications of E. coli 16S rRNA. Furthermore, this method facilitates the rapid and accurate quantification of oligoribonucleotides, including cyclic phosphate intermediates and missed cleavages often generated from RNase digestions.


Asunto(s)
Procesamiento Postranscripcional del ARN , ARN/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Cromatografía Líquida de Alta Presión/métodos , Escherichia coli/genética , Marcaje Isotópico/métodos , Isótopos de Nitrógeno/química , Oligorribonucleótidos/análisis , ARN Bacteriano/análisis , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN Ribosómico 16S/análisis , Ribonucleasas/metabolismo
15.
Nat Struct Mol Biol ; 18(5): 529-36, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21460843

RESUMEN

The CRISPR (clustered regularly interspaced short palindromic repeats) immune system in prokaryotes uses small guide RNAs to neutralize invading viruses and plasmids. In Escherichia coli, immunity depends on a ribonucleoprotein complex called Cascade. Here we present the composition and low-resolution structure of Cascade and show how it recognizes double-stranded DNA (dsDNA) targets in a sequence-specific manner. Cascade is a 405-kDa complex comprising five functionally essential CRISPR-associated (Cas) proteins (CasA(1)B(2)C(6)D(1)E(1)) and a 61-nucleotide CRISPR RNA (crRNA) with 5'-hydroxyl and 2',3'-cyclic phosphate termini. The crRNA guides Cascade to dsDNA target sequences by forming base pairs with the complementary DNA strand while displacing the noncomplementary strand to form an R-loop. Cascade recognizes target DNA without consuming ATP, which suggests that continuous invader DNA surveillance takes place without energy investment. The structure of Cascade shows an unusual seahorse shape that undergoes conformational changes when it binds target DNA.


Asunto(s)
ADN/química , Proteínas de Escherichia coli/química , Escherichia coli/virología , Ribonucleoproteínas/química , Secuencia de Bases , Sitios de Unión , Escherichia coli/inmunología , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiología , Conformación de Ácido Nucleico , Estructura Terciaria de Proteína , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN Bacteriano/fisiología , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/fisiología , Relación Estructura-Actividad , ARN Pequeño no Traducido
16.
J Chromatogr A ; 1216(9): 1377-82, 2009 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-19155018

RESUMEN

DNA/RNA chromatography presents a versatile platform for the analysis of nucleic acids. Although the mechanism of separation of double stranded (ds) DNA fragments is largely understood, the mechanism by which RNA is separated appears more complicated. To further understand the separation mechanisms of RNA using ion pair reverse phase liquid chromatography, we have analysed a number of dsRNA and single stranded (ss) RNA fragments. The high-resolution separation of dsRNA was observed, in a similar manner to dsDNA under non-denaturing conditions. Moreover, the high-resolution separation of ssRNA was observed at high temperatures (75 degrees C) in contrast to ssDNA. It is proposed that the presence of duplex regions/secondary structures within the RNA remain at such temperatures, resulting in high-resolution RNA separations. The retention time of the nucleic acids reflects the relative hydrophobicity, through contributions of the nucleic sequence and the degree of secondary structure present. In addition, the analysis of RNA using such approaches was extended to enable the discrimination of bacterial 16S rRNA fragments and as an aid to conformational analysis of RNA. RNA:RNA interactions of the human telomerase RNA component (hTR) were analysed in conjunction with the incorporation of Mg2+ during chromatography. This novel chromatographic procedure permits analysis of the temperature dependent formation of dimeric RNA species.


Asunto(s)
Cromatografía Liquida/métodos , ARN Bicatenario/análisis , ARN Ribosómico/análisis , ARN/análisis , Escherichia coli K12/genética , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Pseudomonas putida/genética , ARN Bacteriano/análisis , ARN Bicatenario/aislamiento & purificación , ARN Ribosómico 16S/análisis , Salmonella enterica/genética , Telomerasa/análisis , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...