Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Pediatr Blood Cancer ; 69(11): e29864, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35731577

RESUMEN

BACKGROUND: Cytoreductive surgery (CRS) in combination with hyperthermic intraperitoneal chemotherapy (HIPEC) is an option in advanced peritoneal sarcomatosis. Nevertheless, CRS and HIPEC are not successful in all patients. An enhancement of HIPEC using photodynamic therapy (PDT) might be beneficial. Therefore, a combination of the photosensitizer hypericin (HYP) with HIPEC was evaluated in an animal model. PROCEDURE: An established HIPEC animal model for rhabdomyosarcoma (NOD/LtSz-scid IL2Rγnullmice, n = 80) was used. All groups received HYP (100 µg/200 µl) intraperitoneally with and without cisplatin-based (30 or 60 mg/m2 ) HIPEC (37°C or 42°C, for 60 minutes) (five groups, each n = 16). Peritoneal cancer index (PCI) was documented visually and by HYP-based photodynamic diagnosis (PDD). HYP-based PDT of the tumor was performed. Tissue samples were evaluated regarding proliferation (Ki-67) and apoptosis (TUNEL). RESULTS: HYP uptake was detected even in smallest tumor nodes (<1 mm) with improved tumor detection during PDD (PCI with PDD vs. PCI without PDD: 8.5 vs. 7, p < .001***). Apoptotic effects after PDT without HIPEC were limited to the tumor surface, whereas PDT after HIPEC (60 mg/m2 , 42°C) showed additional reduction of tumor proliferation in the top nine to 11 cell layers (50 µm). CONCLUSION: HYP as fluorescent photosensitizer offers an intraoperative diagnostic advantage detecting intraperitoneal tumor dissemination. The combination of HYP and cisplatin-based HIPEC was feasible in vivo, showing enhanced effects on tumor proliferation and apoptosis induction across the tumor surface. Further studies combining HYP and HIPEC will follow to establish a clinical application.


Asunto(s)
Hipertermia Inducida , Neoplasias Peritoneales , Rabdomiosarcoma Embrionario , Rabdomiosarcoma , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Cisplatino/uso terapéutico , Terapia Combinada , Humanos , Quimioterapia Intraperitoneal Hipertérmica , Antígeno Ki-67 , Modelos Animales , Neoplasias Peritoneales/tratamiento farmacológico , Fármacos Fotosensibilizantes/uso terapéutico , Rabdomiosarcoma/tratamiento farmacológico , Rabdomiosarcoma Embrionario/tratamiento farmacológico , Tasa de Supervivencia
2.
Pediatr Blood Cancer ; 69(8): e29482, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34889033

RESUMEN

BACKGROUND: Advanced stages of pediatric alveolar rhabdomyosarcoma (RMA) are associated with an unfavorable outcome at established therapeutic strategies, accentuating the need for novel treatment options. Photodynamic therapy (PDT) with hypericin (HYP) has shown strong cytotoxic effects in two-dimensional (2D) cell culture. In order to more accurately mimic in vivo tissue architecture and better predict pharmaceutical response, the aim of this study was to establish a spheroid culture model by which PDT efficacy could be assessed in a three-dimensional (3D) context. MATERIALS AND METHODS: 3D multicellular tumor spheroids were generated using various scaffold-based and scaffold-free techniques. On two reproducible methods, HYP-PDT was performed varying spheroid sizes, photosensitizer concentrations, and illumination times. The ability for HYP uptake within the spheroid was analyzed assessing the substrate's autofluorescence. Antitumorigenic treatment effects were evaluated investigating cell viability, spheroid morphology, proliferative activity, and induction of apoptosis. RESULTS: Magnetic spheroid printing and orbital shaking methods were established as reproducible culturing systems producing uniform spheroids. Within assessed incubation times, HYP showed good penetration depth in spheroids containing 50,000 cells. PDT was causing metabolic and molecular impairment of RMA cells, resulting in viability decrease, reduction of cell proliferation, and induction of apoptosis. CONCLUSION: Assessing HYP-based PDT in a 3D culture model, we were able to gain an insight on how parameters like photosensitizer, oxygen, and light distribution contribute to the phototoxic effect. Compared to 2D cell culture, a higher treatment resistance was detected, which can be related to spheroid structure and mechanisms of intercellular communication, signal transduction, and gene expression.


Asunto(s)
Fotoquimioterapia , Rabdomiosarcoma Embrionario , Rabdomiosarcoma , Antracenos , Línea Celular Tumoral , Niño , Humanos , Perileno/análogos & derivados , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Rabdomiosarcoma/tratamiento farmacológico
3.
Pediatr Blood Cancer ; 68(11): e29202, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34197033

RESUMEN

BACKGROUND: Cytoreductive surgery in combination with hyperthermic intraperitoneal chemotherapy has been established as a novel treatment approach for peritoneal sarcomatosis. Despite promising clinical reports, there is still a lack of knowledge regarding optimal drug usage and local effects. Therefore, we intended to establish a murine animal model for further evaluation. PROCEDURE: Alveolar rhabdomyosarcoma cells were xenotransplanted into NOD/LtSz-scid IL2Rγnullmice (n = 100). The mice received a continuous intraperitoneal lavage with isotonic saline solution as control or with cisplatin (30 or 60 mg/m2 ) as treatment group for 60 minutes at 37°C or 42°C (6 subgroups, each n = 16). Tumor spread was documented by an adapted peritoneal cancer index and MRI (n = 4). Tumor and tissue samples, harvested at the end of the perfusion, were evaluated regarding morphology, proliferation, and apoptosis (H&E-, Ki-67-, cleaved caspase 3-staining, TUNEL assay). RESULTS: Extensive peritoneal sarcomatosis in over 91% of the cases was observed. HIPEC was feasible without acute side effects. Ki-67 staining revealed concentration- or temperature-dependent effects of cisplatin-based HIPEC on the tumors. Although cleaved caspase-3 showed only sporadic apoptotic effects. TUNEL assay detected concentration- or temperature-dependent apoptotic effects at the outer tumor surface. MRI scans confirmed the observed tumor dissemination. CONCLUSION: This is the first animal model for evaluation of HIPEC in pediatric RMS in mice. Cisplatin-based HIPEC had early effects on the proliferation whereas circumscribed apoptotic effects could be detected at the tumor surface. This model allows further insights on the possible efficiency of HIPEC in RMS. Further studies using other drug combinations and treatment will follow.


Asunto(s)
Quimioterapia Intraperitoneal Hipertérmica , Neoplasias Peritoneales , Rabdomiosarcoma Embrionario , Animales , Protocolos de Quimioterapia Combinada Antineoplásica , Niño , Cisplatino/uso terapéutico , Terapia Combinada , Modelos Animales de Enfermedad , Humanos , Antígeno Ki-67 , Ratones , Ratones Endogámicos NOD , Neoplasias Peritoneales/terapia , Rabdomiosarcoma Embrionario/terapia , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA