Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38498072

RESUMEN

There has been a surge of interest in recent years in understanding the intricate mechanisms underlying cancer progression and treatment resistance. One molecule that has recently emerged in these mechanisms is MUC13 mucin, a transmembrane glycoprotein. Researchers have begun to unravel the molecular complexity of MUC13 and its impact on cancer biology. Studies have shown that MUC13 overexpression can disrupt normal cellular polarity, leading to the acquisition of malignant traits. Furthermore, MUC13 has been associated with increased cancer plasticity, allowing cells to undergo epithelial-mesenchymal transition (EMT) and metastasize. Notably, MUC13 has also been implicated in the development of chemoresistance, rendering cancer cells less responsive to traditional treatment options. Understanding the precise role of MUC13 in cellular plasticity, and chemoresistance could pave the way for the development of targeted therapies to combat cancer progression and enhance treatment efficacy.

2.
Haemophilia ; 29(6): 1475-1482, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37729439

RESUMEN

INTRODUCTION: Turoctocog alfa pegol (N8-GP) is a glycoPEGylated, extended half-life (EHL), human recombinant factor VIII (FVIII) approved for the treatment and prevention of bleeding episodes in patients with haemophilia A. Since its launch in August 2019, > 800 patients have been treated worldwide. AIM: To present data from identified post-marketing cases of less-than-expected FVIII activity in previously treated patients (PTPs) without inhibitors after switching to N8-GP. METHODS: The post-marketing safety database was searched using keywords such as 'coagulation FVIII level decreased'. Identified cases reported prior to 13 October 2021 were included in this report. Cases in which patients had FVIII inhibitors were excluded. RESULTS: Here we report 14 cases of less-than-expected FVIII activity. Details varied greatly amongst the cases. At presentation, FVIII activity ranged from 1% (15 min post-dose) to 51% (2 days post-dose). Seven patients experienced bleeding episodes after switching to N8-GP with heterogeneity in bleeding presentations. Six out of seven patients who were tested for anti-PEG IgG and/or IgM antibodies were positive. In all known cases, FVIII activity returned to the expected range when switched to an alternative FVIII replacement product. CONCLUSION: In conclusion, the 14 reported cases of less-than-expected FVIII activity, without presence of detectable FVIII inhibitors, presented with heterogenous characteristics, and wide variations in FVIII activity and anti-PEG antibody titre. FVIII activity returned to the expected range after switching to alternative FVIII products. In line with WFH guidelines, monitoring of FVIII activity can ensure FVIII activity in the expected range. The safety surveillance of N8-GP continues.


Asunto(s)
Hemofilia A , Hemostáticos , Humanos , Factor VIII/uso terapéutico , Polietilenglicoles/uso terapéutico , Hemofilia A/tratamiento farmacológico , Hemorragia/etiología , Hemorragia/prevención & control , Hemostáticos/uso terapéutico , Semivida , Vigilancia de Productos Comercializados
3.
Minerva Med ; 114(5): 683-697, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37293890

RESUMEN

The COVID-19 disease wreaked havoc all over the world causing more than 6 million deaths out of over 519 million confirmed cases. It not only disturbed the human race health-wise but also caused huge economic losses and social disturbances. The utmost urgency to counter pandemic was to develop effective vaccines as well as treatments that could reduce the incidences of infection, hospitalization and deaths. The most known vaccines that could help in managing these parameters are Oxford-AstraZeneca (AZD1222), Pfizer-BioNTech (BNT162b2), Moderna (mRNA-1273) and Johnson & Johnson (Ad26.COV2.S). The effectiveness of AZD1222 vaccine in reducing deaths is 88% in the age group 40-59 years, touching 100% in the age group 16-44 years & 65-84 years. BNT162b2 vaccine also did well in reducing deaths due to COVID-19 (95% in the age group 40-49 years and 100% in the age group 16-44 years. Similarly, mRNA-1273 vaccine showed potential in reducing COVID-19 deaths with effectiveness ranging from 80.3 to 100% depending upon age group of the vaccinated individuals. Ad26.COV2.S vaccine was also 100% effective in reducing COVID-19 deaths. The SARS-CoV-2 emerging variants have emphasized the need of booster vaccine doses to enhance protective immunity in vaccinated individuals. Additionally, therapeutic effectiveness of Molnupiravir, Paxlovid and Evusheld are also providing resistance against the spread of COVID-19 disease as well as may be effective against emerging variants. This review highlights the progress in developing COVID-19 vaccines, their protective efficacies, advances being made to design more efficacious vaccines, and presents an overview on advancements in developing potent drugs and monoclonal antibodies for countering COVID-19 and emerging variants of SARS-CoV-2 including the most recently emerged and highly mutated Omicron variant.


Asunto(s)
COVID-19 , Vacunas , Adolescente , Adulto , Humanos , Persona de Mediana Edad , Adulto Joven , Vacuna nCoV-2019 mRNA-1273 , Ad26COVS1 , Vacuna BNT162 , ChAdOx1 nCoV-19 , COVID-19/prevención & control , Vacunas contra la COVID-19/uso terapéutico , SARS-CoV-2 , Anciano , Anciano de 80 o más Años
4.
Biotechnol Genet Eng Rev ; : 1-18, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37144664

RESUMEN

B cells in protection against malaria and need of experiencing many episodes in humans to achieve a state of immunity is largely unknown. The cellular basis of such defects in terms of B cell generation, maturation and trafficking was studied by taking Plasmodium chabaudi, a non-lethal and Plasmodium berghei, a lethal murine model. A flow cytometry (FCF) based evaluation was used to study alterations in generation and maintenance of B cells in patients with Plasmodium falciparum malaria as well as in murine malaria models. A significant accumulation of mature B cells in bone marrow and immature B cells in circulation was a feature observed only in lethal malaria. At peak parasitaemia, both the models induce a significant decrease in T2 (transitional) B cells with expansion of T1B cells. Studies in patients with acute Pf malaria showed a significant expansion of memory B cells and TB cells with a concomitant decrease in naive2 B cells as compared with healthy controls. This study clearly demonstrates that acute malarial infection induces major disturbances in B cell development in lymphoid organs and trafficking in periphery.

6.
Biotechnol Genet Eng Rev ; : 1-18, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36597619

RESUMEN

Cytotoxic T-lymphocyte associated protein 4 (CTLA-4) molecule controls T cell immune response. Functional single nucleotide polymorphisms (SNPs) in the CTLA-4 gene have been associated with several autoimmune diseases, including systemic lupus erythematosus (SLE).  However, the genetic association of the CTLA-4 variants with vulnerability to SLE remained contradictory. We have conducted a current meta-analysis by combining the findings of prior published articles in order to make a conclusive statement. Various literature databases were screened with appropriate keywords to obtain relevant articles, and eligible reports were obtained using well-defined inclusion and exclusion criteria. Meta-analysis was performed by Comprehensive Meta-analysis V 3.3, and various statistical parameters such as odds ratio, 95% confidence interval, and probability values were computed. A total of 3847 SLE patients and 5278 healthy controls were considered in the present meta-analysis from 26 individual reports. A significant association of CTLA-4 +49 A/G (G vs. A: p=0.03, OR=1.47) and -1722 T/C (p=0.02, OR=0.87) polymorphisms were observed with susceptibility and resistance against the development of SLE, respectively. However, the other two SNPs in the CTLA-4 gene (-318 C/T and -1661 A/G) failed to establish a connection. Interestingly, subgroup analysis revealed an association of CTLA-4 +49 A/G with a predisposition to SLE only in the Asian population (G vs. A: p=0.04, OR=1.26, GG vs. AA: p=0.02, OR=1.84, AG vs AA: p=0.01, OR=1.44, GG+AG vs AA: p=0.01, OR=1.52) and not in Caucasians. The current meta-analysis suggests a significant CTLA-4 +49 A/G variant association with susceptibility to SLE development in overall and Asian populations. In contrast, the other variant, -1722 T/C, is linked with protection against SLE. However, further case-control studies in diverse ethnic populations are requisite.

7.
Biotechnol Genet Eng Rev ; : 1-14, 2023 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-36617893

RESUMEN

Metastatic melanoma has less frequency, but considered as the most dreaded cancer. The combination of nivolumab & ipilimumab is proving their mettle in treating metastatic melanoma. The patients when administered with the combination of nivolumab & ipilimumab have shown improved median progression free survival, objective response rate and overall survival rate compared with nivolumab and ipilimumab monotherapy. The combination shrinks the tumor cells by attacking different checkpoints viz. CTLA-4 and PD-L1, respectively. The combination treatment reveals reduced disease progression and suggests nivolumab's non-cross resistant nature. The median progression free survival in "nivolumab plus ipilimumab" group has shown an increase of 66.7% and 296.6% in comparison to nivolumab and ipilimumab monotherapy. The other parameter viz. objective response rate improvement is equivalent to almost 14% and 38.6% when compared to nivolumab and ipilimumab monotherapy, respectively.

8.
Food Chem ; 410: 135320, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36610090

RESUMEN

Several lines of evidences have implicated the resident microbiome as a key factor in the modulation of host physiology and pathophysiology; including the resistance to cancers. Gut microbiome heavily influences host lipid homeostasis by their modulatory effects on the metabolism of bile acids (BAs). Microbiota-derived BA metabolites such as deoxycholic acid (DCA), lithocholic acid (LCA), and ursodeoxycholic acid (UDCA) are implicated in the pathogeneses of various cancer types. The pathogenic mechanisms are multimodal in nature, with widespread influences on the host immunes system, cell survival and growth signalling and DNA damage. On the other hand, short-chain fatty acids (SCFAs) produced by the resident microbial activity on indigestible dietary fibres as well as during intermittent fasting regimens (such as the Ramazan fasting) elicit upregulation of the beneficial anti-inflammatory and anticancer pathways in the host. The present review first provides a brief overview of the molecular mechanisms of microbiota-derived lipid metabolites in promotion of tumour development. The authors then discuss the potential of diet as a therapeutic route for beneficial alteration of microbiota and the consequent changes in the production of SCFAs, particularly butyrate, in relation to the cancer prevention and treatment.


Asunto(s)
Ácidos y Sales Biliares , Microbiota , Humanos , Ácidos Grasos Volátiles/metabolismo , Dieta , Carcinogénesis/genética
9.
J Biomol Struct Dyn ; 41(16): 8018-8025, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36166625

RESUMEN

Mycobacterium Aspartate beta semialdehyde dehydrogenase (ASADH) was studied using various spectroscopic techniques and size exclusion chromatography to examine the unfolding of free (apo) and NADP/H-bound (holo) forms of ASADH. Non-cooperative guanidinium chloride (GdnHCl)-induced unfolding of the apo ASADH was discovered, and no partially folded intermediate structures were stabilized. On the other hand, it was observed that GdnHCl's unfolding of holoenzyme was a cooperative process without any stable intermediate structure. The native form of holoenzyme is found to be stable against the lower concentration of GdnHCl only (namely up to 1.25 M GdnHCl). The tryptophan environment appears to unfold cooperatively in case of the holoenzyme and is in well coordination with the overall unfolding of the holoenzyme. The presence of NADP/H shows a stabilizing effect on the tryptophan environment as well as on the native NADP/H-bound enzyme. ΔGSolvento values reveal nearly two-fold (∼1.9) conformationally more stable folded holoenzyme compared to its native apo state. The Cm for the apo and holo forms of ASADH are 1.3 and 1.9 M, respectively. Novel drug leads targeting the NADP/H binding domain of ASADH could offer promising drugs against extremely infective Mycobacterium tuberculosis.Communicated by Ramaswamy H. Sarma.

10.
Vaccines (Basel) ; 10(2)2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35214771

RESUMEN

Hemorrhagic septicemia (HS) caused by Pasteurella multocida B:2 and E:2 is among the fatal bacterial diseases in cattle and buffaloes that are economically valuable in Asian and African countries. The current work aims to study the prevalence of HS among buffaloes, cattle, sheep, and goats in 41 countries in 2005-2019. The data analysis revealed that 74.4% of the total infection rate in the world was distributed among cattle, followed by buffaloes (13.1%). The mortality of HS among cattle and buffaloes increased in 2017-2019 compared to the period between 2014 and 2016. The best measure to control the disease is through vaccination programs. Current commercial vaccines, including live-attenuated vaccines and inactivated vaccines, have some shortcomings and undesirable effects. Virus-like particles (VLPs) have more potential as a vaccine platform due to their unique properties to enhance immune response and the ability to use them as a platform for foreign antigens against infectious diseases. VLPs-based vaccines are among the new-generation subunit vaccine approaches that have been licensed for the human and veterinary fields. However, most studies are still in the late stages of vaccine evaluation.

11.
Semin Cancer Biol ; 86(Pt 2): 1179-1189, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-34302959

RESUMEN

Gynecologic cancers, starting in the reproductive organs of females, include cancer of cervix, endometrium, ovary commonly and vagina and vulva rarely. The changes in the composition of microbiome in gut and vagina affect immune and metabolic signaling of the host cells resulting in chronic inflammation, angiogenesis, cellular proliferation, genome instability, epithelial barrier breach and metabolic dysregulation that may lead to the onset or aggravated progression of gynecologic cancers. While microbiome in gynecologic cancers is just at horizon, certain significant microbiome signature associations have been found. Cervical cancer is accompanied with high loads of human papillomavirus, Fusobacteria and Sneathia species; endometrial cancer is reported to have presence of Atopobium vaginae and Porphyromonas species and significantly elevated levels of Proteobacteria and Firmicutes phylum bacteria, with Chlamydia trachomatis, Lactobacillus and Mycobacterium reported in ovarian cancer. Balancing microbiome composition in gynecologic cancers has the potential to be used as a therapeutic target. For example, the Lactobacillus species may play an important role in blocking adhesions of incursive pathogens to vaginal epithelium by lowering the pH, producing bacteriocins and employing competitive exclusions. The optimum or personalized balance of the microbiota can be maintained using pre- and probiotics, and fecal microbiota transplantations loaded with specific bacteria. Current evidence strongly suggest that a healthy microbiome can train and trigger the body's immune response to attack various gynecologic cancers. Furthermore, microbiome modulations can potentially contribute to improvements in immuno-oncology therapies.


Asunto(s)
Neoplasias de los Genitales Femeninos , Microbiota , Probióticos , Humanos , Femenino , Vagina/microbiología , Lactobacillus , Microbiota/genética , Neoplasias de los Genitales Femeninos/etiología , Neoplasias de los Genitales Femeninos/terapia , Probióticos/uso terapéutico
12.
Vet World ; 15(12): 2945-2952, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36718330

RESUMEN

Background and Aim: Pneumonic mannheimiosis (PM) is a common respiratory bacterial disease among small ruminants. Despite numerous management methods, vaccination remains a suitable strategy to combat or reduce PM in goats and sheep. Thus, a study was conducted in Malaysia to evaluate the immunogenicity of exopolysaccharide-adjuvanted Mannheimia haemolytica A2 vaccine (EPS-MHA2) under laboratory and field conditions for its potential use as an efficient vaccine against PM. Materials and Methods: This study induced immunoglobulin (Ig) responses following intramuscular (IM) delivery of the EPS-MHA2 vaccine on 12 goats for about 7 months. Goats were divided into three groups, with three goats per group, and they were vaccinated intramuscularly as follows: Group 1 was vaccinated with an adjuvanted vaccine prepared from formalin-killed M. haemolytica serotypes A2 and EPS excipient; Group 2 was vaccinated with formalin-killed M. haemolytica seed only, whereas Group 3 was injected with phosphate-buffered saline (PBS) as the negative control. Measures of specific immunity included serum IgM, IgG, and IgA as well as bronchoalveolar lavage fluid secretory IgA and the size and number of the bronchus-associated lymphoid tissue (BALT). Results: From the 1st day of vaccination, Groups 1 and 2 showed a significant (p < 0.05) increase in serum IgM, IgG, and IgA levels. However, the antibodies started to decline 5-week post-vaccination, indicating that the booster dose was necessary. On the second exposure to the same vaccine (booster), the level of antibodies showed a significant increase (p < 0.05), particularly IgG. All groups were challenged intratracheally by virulent MHA2 2 weeks after the decline of second antibodies on the administration of booster. All goats were euthanatized and necropsied 4-week post-challenge. The number and size of the BALT in Group 1 goats significantly increased compared with those in Group 2 and the unvaccinated control. Bacteriological parameters were evaluated, in which MHA2 was reisolated successfully from lung samples in Group 3. The IgA level produced by the group vaccinated with EPS-MHA2 was significantly (p < 0.001) higher than that the MHA2 vaccine and PBS groups. All data obtained were analyzed statistically using a one-way analysis of variance. The results indicate that IM injection of EPS-MHA2 vaccine significantly enhanced the immune response against MHA2. Conclusion: Therefore, the addition of EPS to MHA2 (EPS-MHA2 vaccine) can effectively protect goats from lethal mannheimiosis infection. Factors such as the ideal concentration of EPS should be further studied to verify its application potential as a vaccine adjuvant, and the extraction of EPS from different microalgae species should be further investigated. This study showed a novel and exciting set of data and a vaccination system, in which the suppressive effects of mannheimiosis may be further investigated.

13.
Data Brief ; 39: 107607, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34869809

RESUMEN

Messastrum gracile SE-MC4 is a non-model microalga exhibiting superior oil-accumulating abilities. However, biomass production in M. gracile SE-MC4 is limited due to low cell proliferation especially after prolonged cultivation under oil-inducing culture conditions. Present data consist of next generation RNA sequencing data of M. gracile SE-MC4 under exponential and stationary growth stages. RNA of six samples were extracted and sequenced with insert size of 100 bp paired-end strategy using BGISEQ-500 platform to produce a total of 59.64 Gb data with 314 million reads. Sequences were filtered and de novo assembled to form 53,307 number of gene sequences. Sequencing data were deposited in National Center for Biotechnology Information (NCBI) and can be accessed via BioProject ID PRJNA552165. This information can be used to enhance biomass production in M. gracile SE-MC4 and other microalgae aimed towards improving biodiesel development.

14.
Phytochemistry ; 192: 112936, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34509143

RESUMEN

The non-model microalga Messastrum gracile SE-MC4 is a potential species for biodiesel production. However, low biomass productivity hinders it from passing the life cycle assessment for biodiesel production. Therefore, the current study was aimed at uncovering the differences in the transcriptome profiles of the microalgae at early exponential and early stationary growth phases and dissecting the roles of specific differential expressed genes (DEGs) involved in cell division during M. gracile cultivation. The transcriptome analysis revealed that the photosynthetic integral membrane protein genes such as photosynthetic antenna protein were severely down-regulated during the stationary growth phase. In addition, the signaling pathways involving transcription, glyoxylate metabolism and carbon metabolism were also down-regulated during stationary growth phase. Current findings suggested that the coordination between photosynthetic integral membrane protein genes, signaling through transcription and carbon metabolism classified as prominent strategies during exponential growth stage. These findings can be applied in genetic improvement of M. gracile for biodiesel application.


Asunto(s)
Chlorophyceae , Microalgas , Biomasa , Proteínas de la Membrana , Microalgas/genética , Fotosíntesis/genética , Transcriptoma
15.
Biologicals ; 71: 51-54, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33858743

RESUMEN

A natural biodegradable polymer, polyhydroxyalkanoate (PHA), was adjuvanted with a vaccine seed to observe the biomaterial's ability in enhancing an immune response in rats. The adjuvant potential of PHA was tested using the whole-killed Pasteurella multocida B:2 (PMB2) vaccine in Sprague Dawley (SD) rats to detect changes in serum immunoglobulin G (IgG) and immunoglobulin M (IgM) responses. A common PHA, poly(3-hydroxybutyrate) [P(3HB)], from Bacillus megaterium UMTKB-1 was constructed into microparticles using the solvent evaporation method. Twelve SD rats were divided into four treatment groups: 1) non-treatment as negative control, 2) P(3HB) adjuvant, 3) PMB2 vaccine, and 4) adjuvanted-P(3HB)/PMB2 vaccine groups, which were intramuscularly vaccinated twice. Immunoglobulins IgG and IgM levels were used as markers of the immune response induced by the adjuvanted-P(3HB)/PMB2 vaccine and analysed over an eight-week study period. The group vaccinated specifically with adjuvanted-P(3HB)/PMB2 vaccine had higher concentrations of immunoglobulins compared to other treatment groups, hence demonstrating the potential of the adjuvant to enhance immune response. Findings showed a need to delay the delivery of the second booster dose to determine the appropriate regime for the adjuvanted-P(3HB)/PMB2 vaccine.


Asunto(s)
Adyuvantes Inmunológicos , Anticuerpos Antibacterianos/sangre , Vacunas Bacterianas/inmunología , Inmunoglobulina G/sangre , Pasteurella multocida , Polihidroxialcanoatos , Adyuvantes Inmunológicos/farmacología , Animales , Inmunoglobulina M/sangre , Pasteurella multocida/inmunología , Ratas , Ratas Sprague-Dawley
16.
Artif Cells Nanomed Biotechnol ; 49(1): 335-344, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33783274

RESUMEN

To date, several Glucosyltransferase C (GtfC) inhibitors have been identified and experimentally validated. All these inhibitors have been validated at different experimental conditions like degree of purity, animal models, kinetic conditions, experimental environment etc.; and most of these inhibitors (ligands) proved to be quite effective in their respective validation environment. However, due to varied experimental validation conditions, and absence of molecular interaction data, there is no way to prioritize these validated ligands for their inhibition potential against GtfC. The present study is a novel attempt of comparative evaluation of the interaction of the validated ligands on a single platform and under similar conditions with a dual objective, i.e. ligand prioritization for their respective inhibitory potential and elucidation of the involved unknown molecular interactions. Carbohydrate derivatives (6-Deoxy sucrose and Trichloro-galactosucrose) were identified as the most promising GtfC inhibitors. In addition, Asp588, Trp517, and Asn481 amino acid residues of the domain A1 proved vital for the inhibitory effect. The study highlights the importance of the comparative analysis of the validated ligands in order to identify the most promising leads for drug discovery against dental caries.


Asunto(s)
Biopelículas/efectos de los fármacos , Glucosiltransferasas/metabolismo , Streptococcus mutans/efectos de los fármacos , Streptococcus mutans/fisiología , Caries Dental/microbiología
17.
Sci Rep ; 11(1): 381, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33431982

RESUMEN

Bioprospecting for biodiesel potential in microalgae primarily involves a few model species of microalgae and rarely on non-model microalgae species. Therefore, the present study determined changes in physiology, oil accumulation, fatty acid composition and biodiesel properties of a non-model microalga Messastrum gracile SE-MC4 in response to 12 continuous days of nitrate-starve (NS) and nitrate-replete (NR) conditions respectively. Under NS, the highest oil content (57.9%) was achieved despite reductions in chlorophyll content, biomass productivity and lipid productivity. However, under both NS and NR, palmitic acid and oleic acid remained as dominant fatty acids thus suggesting high potential of M. gracile for biodiesel feedstock consideration. Biodiesel properties analysis returned high values of cetane number (CN 61.9-64.4) and degree of unsaturation (DU 45.3-57.4) in both treatments. The current findings show the possibility of a non-model microalga to inherit superior ability over model species in oil accumulation for biodiesel development.


Asunto(s)
Chlorophyceae , Medios de Cultivo/farmacología , Ácido Oléico/metabolismo , Ácido Palmítico/metabolismo , Biocombustibles , Biomasa , Técnicas de Cultivo de Célula , Chlorophyceae/citología , Chlorophyceae/efectos de los fármacos , Chlorophyceae/crecimiento & desarrollo , Chlorophyceae/metabolismo , Medios de Cultivo/química , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Microalgas/citología , Microalgas/efectos de los fármacos , Microalgas/crecimiento & desarrollo , Microalgas/metabolismo , Nitrógeno/deficiencia , Nitrógeno/farmacología , Inanición/metabolismo
18.
Sci Rep ; 11(1): 438, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33432049

RESUMEN

Mangrove-dwelling microalgae are well adapted to frequent encounters of salinity fluctuations across their various growth phases but are lesser studied. The current study explored the adaptive changes (in terms of biomass, oil content and fatty acid composition) of mangrove-isolated C. vulgaris UMT-M1 cultured under different salinity levels (5, 10, 15, 20, 30 ppt). The highest total oil content was recorded in cultures at 15 ppt salinity (63.5% of dry weight) with uncompromised biomass productivity, thus highlighting the 'trigger-threshold' for oil accumulation in C. vulgaris UMT-M1. Subsequently, C. vulgaris UMT-M1 was further assessed across different growth phases under 15 ppt. The various short, medium and long-chain fatty acids (particularly C20:0), coupled with a high level of C18:3n3 PUFA reported at early exponential phase represents their physiological importance during rapid cell growth. Accumulation of C18:1 and C18:2 at stationary growth phase across all salinities was seen as cells accumulating substrate for C18:3n3 should the cells anticipate a move from stationary phase into new growth phase. This study sheds some light on the possibility of 'triggered' oil accumulation with uninterrupted growth and the participation of various fatty acid types upon salinity mitigation in a mangrove-dwelling microalgae.


Asunto(s)
Chlorella vulgaris/metabolismo , Ácidos Grasos/fisiología , Metabolismo de los Lípidos/fisiología , Salinidad , Biocombustibles , Biomasa , Chlorella vulgaris/efectos de los fármacos , Chlorella vulgaris/crecimiento & desarrollo , Medios de Cultivo/química , Medios de Cultivo/farmacología , Ácidos Grasos/clasificación , Cloruro de Sodio/farmacología
19.
Arch Med Sci ; 17(1): 177-188, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33488870

RESUMEN

INTRODUCTION: The role of interferon gamma (IFN-γ) +874 A>T (rs2430561) gene polymorphism has been evaluated in different ethnicities with pulmonary tuberculosis (PTB) infection, and inconsistent results have been reported. In this study, a meta-analysis was performed to determine the precise association between IFN-γ +874 A>T gene polymorphism and PTB susceptibility. MATERIAL AND METHODS: A total of 21 studies comprising 4281 confirmed PTB cases and 5186 healthy controls were included in this meta-analysis by searching the PubMed (Medline), EMBASE, and Google Scholar web-databases. RESULTS: We observed reduced risk of PTB in allelic contrast (T vs. A: p = 0.001; OR = 0.818, 95% CI: 0.723-0.926), homozygous (TT vs. AA: p = 0.017; OR = 0.715, 95% CI: 0.543-0.941), heterozygous (AT vs. AA: p = 0.002; OR = 0.782, 95% CI: 0.667-0.917), dominant (TT+AT vs. AA: p = 0.002; OR = 0.768, 95% CI: 0.652-0.906), and recessive (TT vs. AA+AT: p = 0.042; OR = 0.802, 95% CI: 0.649-0.992) genetic models. In ethnicity-wise subgroup analysis, reduced risk of PTB was found in the Caucasian population. However, we did not find an association with any of the genetic models in the Asian population. CONCLUSIONS: In conclusion, the IFN-γ +874 A>T gene polymorphism is significantly associated with reduced risk of PTB, showing a protective effect in the overall and in the Caucasian population. However, this polymorphism is not associated with PTB risk in the Asian population.

20.
RSC Adv ; 11(49): 30925, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-35498943

RESUMEN

[This corrects the article DOI: 10.1039/D0RA09265G.].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA