Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(2)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38257226

RESUMEN

AZO-coated ZnO core-shell nanorods were successfully fabricated using the mist chemical vapor deposition method. The influence of coating time on the structural, optical, and photocatalytic properties of zinc oxide nanorods was investigated. It was observed that the surface area of AZO-coated ZnO core-shell nanorods increased with an increase in coating time. The growth orientation along the (0001) crystal plane of the AZO thin film coating was the same as that of zinc oxide nanorods. The crystallinity of AZO-coated ZnO core-shell nanorods was significantly improved as well. The optical transmittance of AZO-coated ZnO core-shell nanorods was greater than 55% in the visible region. The degradation efficiency for methyl red dye solution increased with an increase in coating time. The highest degradation efficiency was achieved by AZO-coated ZnO core-shell nanorods with a coating duration of 20 min, exhibiting a degradation rate of 0.0053 min-1. The photodegradation mechanism of AZO-coated ZnO core-shell nanorods under ultraviolet irradiation was revealed.

2.
Molecules ; 28(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36615591

RESUMEN

Zinc oxide nanorods were grown on an aluminum-doped zinc oxide seeds layer using the chemical bath deposition method. The effects of growth reaction time on the structural, optical, and photocatalytic properties of zinc oxide nanorods were investigated. It was clearly observed that the growth direction of zinc oxide nanorods were dependent on the crystallinity of the as-deposited aluminum-doped zinc oxide seed layer. The crystallinity of the obtained zinc oxide nanorods was improved with the increase in reaction times during the chemical bath deposition process. The mechanism of zinc oxide nanorod growth revealed that the growth rate of nanorods was influenced by the reaction times. With increasing reaction times, there were much more formed zinc oxide crystalline stacked growth along the c-axis orientation resulting in an increase in the length of nanorods. The longest nanorods and the high crystallinity were obtained from the zinc oxide nanorods grown within 5 h. The optical transmittance of all zinc oxide nanorods was greater than 70% in the visible region. Zinc oxide nanorods grown for 5 h showed the highest degradation efficiency of methyl red under ultraviolet light and had a high first-order degradation rate of 0.0051 min-1. The photocatalytic mechanism was revealed as well.


Asunto(s)
Nanotubos , Óxido de Zinc , Óxido de Zinc/química , Tiempo de Reacción , Aluminio , Nanotubos/química , Rayos Ultravioleta
3.
Nanomaterials (Basel) ; 12(2)2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-35055216

RESUMEN

Aluminum-doped zinc oxide film was deposited on a glass substrate by mist chemical vapor deposition method. The influence of different aluminum doping ratios on the structural and optical properties of zinc oxide film was investigated. The XRD results revealed that the diffraction peak of (101) crystal plane was the dominant peak for the deposited AZO films with the Al doping ratios increasing from 1 wt % to 3 wt %. It was found that the variation of AZO film structures was strongly dependent on the Al/Zn ratios. The intertwined nanosheet structures were obtained when Zn/O ratios were greater than Al/O ratios with the deposition temperature of 400 °C. The optical transmittance of all AZO films was greater than 80% in the visible region. The AZO film deposited with Al doping ratio of 2 wt % showed the highest photocatalytic efficiency between the wavelength of 475 nm and 700 nm, with the high first-order reaction rate of 0.004 min-1 under ultraviolet radiation. The mechanism of the AZO film influenced by aluminum doping ratio during mist chemical vapor deposition process was revealed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...