Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Surv Ophthalmol ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39236988

RESUMEN

The International Space Station (ISS) is a $100 billion epicenter of human activity in the vacuum of space, displaying mankind's collective endeavor to explore the cosmic frontier. Even within the marvels of technological sophistication aboard the ISS, the human eye remains a highly vulnerable structure. In the absence of multiple layers of protection and risk assessments, crewmembers would face a substantial increase in vulnerability to ocular injury. Aside from stringent preflight screening criteria for astronauts, the ISS is equipped with ophthalmic medications, environmental control and life support systems (e.g., humidity regulation, carbon dioxide removal, pressurized device regulators), and radiation protection to reduce ocular injury. Moreover, additional countermeasures are currently being developed to mitigate the effects of spaceflight-associated neuro-ocular syndrome (SANS) and lunar dust toxicity for the Artemis Program missions. The success of future endeavors hinges not only on continued technological innovation, but also respecting the intricate interplay between human physiology and the extraterrestrial environments. Establishing habitations on the Moon and Mars, as well as NASA's Gateway Program (humanity's first space station around the Moon), will introduce a new set of challenges, underscoring the necessity for continuous insights into ocular health in space. We discuss the safety protocols, precautions, and countermeasures implemented on the ISS to prevent ocular injury - an aspect often overshadowed by the grandeur of space exploration.

2.
Cont Lens Anterior Eye ; : 102284, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39198101

RESUMEN

Corneal diseases represent a growing public health burden, especially in resource-limited settings lacking access to specialized eye care. Artificial intelligence (AI) offers promising solutions for automating the diagnosis and management of corneal conditions. This narrative review examines the application of AI in corneal diseases, focusing on keratoconus, infectious keratitis, pterygium, dry eye disease, Fuchs endothelial corneal dystrophy, and corneal transplantation. AI models integrating diverse imaging modalities (e.g., corneal topography, slit-lamp, and anterior segment OCT images) and clinical data have demonstrated high diagnostic accuracy, often outperforming human experts. Emerging trends include the incorporation of biomechanical data to enhance keratoconus detection, leveraging in vivo confocal microscopy for diagnosing infectious keratitis, and employing multimodal approaches for comprehensive disease analysis. Additionally, AI has shown potential in predicting disease progression, treatment outcomes, and postoperative complications in corneal transplantation. While challenges remain such as population heterogeneity, limited external validation, and the "black box" nature of some models, ongoing advancement in explainable AI, data augmentation, and improved regulatory frameworks can serve to address these limitations.

3.
6.
Eye (Lond) ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043818
7.
Life Sci Space Res (Amst) ; 42: 40-46, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39067989

RESUMEN

With plans for future long-duration crewed exploration, NASA has identified several high priority potential health risks to astronauts in space. One such risk is a collection of neurologic and ophthalmic findings termed spaceflight associated neuro-ocular syndrome (SANS). The findings of SANS include optic disc edema, globe flattening, retinal nerve fiber layer thickening, chorioretinal folds, hyperopic shifts, and cotton-wool spots. The cause of SANS was initially thought to be a cephalad fluid shift in microgravity leading to increased intracranial pressure, venous stasis and impaired CSF outflow, but the precise etiology of SANS remains ill defined. Recent studies have explored multiple possible pathogenic mechanisms for SANS including genetic and hormonal factors; a cephalad shift of fluid into the orbit and brain in microgravity; and disruption to the brain glymphatic system. Orbital, ocular, and cranial imaging, both on Earth and in space has been critical in the diagnosis and monitoring of SANS (e.g., fundus photography, optical coherence tomography (OCT), magnetic resonance imaging (MRI), and orbital/cranial ultrasound). In addition, we highlight near-infrared spectroscopy and diffusion tensor imaging, two newer modalities with potential use in future studies of SANS. In this manuscript we provide a review of these modalities, outline their current and potential use in space and on Earth, and review the reported major imaging findings in SANS.


Asunto(s)
Vuelo Espacial , Humanos , Ingravidez/efectos adversos , Astronautas , Oftalmopatías/etiología , Síndrome , Tomografía de Coherencia Óptica , Imagen por Resonancia Magnética , Imagen de Difusión Tensora , Espectroscopía Infrarroja Corta/métodos
8.
Life Sci Space Res (Amst) ; 42: 37-39, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39067988

RESUMEN

Dry eye syndrome (DES) poses a significant challenge for astronauts during space missions, with reports indicating up to 30% of International Space Station (ISS) crew members. The microgravity environment of space alters fluid dynamics, affecting distribution of fluids on the surface of the eye as well as inducing cephalad fluid shifts that can alter tear drainage. Chronic and persistent DES not only impairs visual function, but also compromises the removal of debris, a heightened risk for corneal abrasions in the microgravity environment. Despite the availability of artificial tears on the ISS, the efficacy is challenged by altered fluid dynamics within the bottle and risks of contamination, thereby exacerbating the potential for corneal abrasions. In light of these challenges, there is a pressing need for innovative approaches to address DES in astronauts. Neurostimulation has emerged as a promising technology countermeasure for DES in spaceflight. By leveraging electrical signals to modulate neural function, neurostimulation offers a novel therapeutic avenue for managing DES symptoms. In this paper, we will explore the risk factors and current treatment modalities for DES, highlighting the limitations of existing approaches. Furthermore, we will delve into the novelty and potential of neurostimulation as a countermeasure for DES in future long-duration missions, including those to the Moon and Mars.


Asunto(s)
Astronautas , Síndromes de Ojo Seco , Terapia por Estimulación Eléctrica , Vuelo Espacial , Humanos , Síndromes de Ojo Seco/etiología , Terapia por Estimulación Eléctrica/métodos , Ingravidez/efectos adversos
9.
Life Sci Space Res (Amst) ; 42: 8-16, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39067995

RESUMEN

Lower Body Negative Pressure (LBNP) redistributes blood from the upper body to the lower body. LBNP may prove to be a countermeasure for the multifaceted physiological changes endured by astronauts during spaceflight related to cephalad fluid shift. Over more than five decades, beginning with the era of Skylab, advancements in LBNP technology have expanded our understanding of neurological, ophthalmological, cardiovascular, and musculoskeletal adaptations in space, with particular emphasis on mitigating issues such as bone loss. To date however, no comprehensive review has been conducted that chronicles the evolution of this technology or elucidates the broad-spectrum potential of LBNP in managing the diverse physiological challenges encountered in the microgravity environment. Our study takes a chronological perspective, systematically reviewing the historical development and application of LBNP technology in relation to the various pathophysiological impacts of spaceflight. The primary objective is to illustrate how this technology, as it has evolved, offers an increasingly sophisticated lens through which to interpret the systemic effects of space travel on human physiology. We contend that the insights gained from LBNP studies can significantly aid in formulating targeted and effective countermeasures to ensure the health and safety of astronauts. Ultimately, this paper aspires to promote a more cohesive understanding of the broad applicability of LBNP as a countermeasure against multiple bodily effects of space travel, thereby contributing to a safer and more scientifically informed approach to human space exploration.


Asunto(s)
Astronautas , Presión Negativa de la Región Corporal Inferior , Vuelo Espacial , Ingravidez , Humanos , Ingravidez/efectos adversos , Medidas contra la Ingravidez , Adaptación Fisiológica
10.
Life Sci Space Res (Amst) ; 42: 53-61, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39067991

RESUMEN

As spaceflight becomes increasingly accessible and expansive to humanity, it is becoming ever more essential to consider the treatment of various eye diseases in these challenging environments. This paper delves into the increasing fascination with interplanetary travel and its implications for health management in varying environments. It specifically discusses the pharmacological management of ocular diseases, focusing on two key delivery methods: topical eye drops and intravitreal injections. The paper explores how microgravity impacts the administration of these treatments, a vital aspect in understanding drug delivery in space. An extensive analysis is presented on the pharmacokinetics of eye medications, examining the interaction between pharmaceuticals and ocular tissues in zero gravity. The goal of the paper is to bridge the understanding of fluid dynamics, microgravity and the human physiological systems to pave the way for innovative solutions faced by individuals in microgravity.


Asunto(s)
Soluciones Oftálmicas , Vuelo Espacial , Ingravidez , Humanos , Hidrodinámica , Oftalmopatías/tratamiento farmacológico , Ojo/metabolismo , Inyecciones Intravítreas , Biofisica
11.
Life Sci Space Res (Amst) ; 42: 99-107, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39067998

RESUMEN

Long-duration spaceflight (LDSF) is associated with unique hazards and linked with numerous human health risks including Spaceflight Associated Neuro-ocular Syndrome (SANS). The proposed mechanisms for SANS include microgravity induced cephalad fluid shift and increased Intracranial Pressure (ICP). SANS is a disorder seen only after LDSF and has no direct terrestrial pathologic counterpart as the zero G environment cannot be completely replicated on Earth. Head-down tilt, bed rest studies however have been used as a terrestrial analog and produce the cephalad fluid shift. Some proposed countermeasures for SANS include vasoconstrictive thigh cuffs and lower body negative pressure. Another potential researched countermeasure is the impedance threshold device (ITD) which can reduce ICP. We review the mechanisms of the ITD and its potential use as a countermeasure for SANS.


Asunto(s)
Vuelo Espacial , Ingravidez , Humanos , Ingravidez/efectos adversos , Impedancia Eléctrica , Síndrome , Reposo en Cama/efectos adversos , Oftalmopatías/fisiopatología , Oftalmopatías/etiología , Medidas contra la Ingravidez , Presión Intracraneal , Inclinación de Cabeza
12.
Life Sci Space Res (Amst) ; 42: 72-73, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39067993

RESUMEN

Lunar exploration offers an exciting opportunity for humanity to advance scientific knowledge and future potential economic growth and possibly allow humans to become a multi-planetary species. On April 2, 2024 the US Office of Science and Technology Policy released a memorandum outlining the current Biden-Harris Administration's policy on the need to establish time standards at celestial bodies other than Earth. This memorandum also introduced the need for Coordinated Lunar Time (CLT), the concept of having a reference time for the moon. The establishment of CLT would provide a multitude of benefits for astronaut health, from expedition planning, to maintaining a sense of order in an austere environment. International agreements and collaboration will be required prior to the recognition of CLT.


Asunto(s)
Astronautas , Luna , Vuelo Espacial , Humanos , Medicina Aeroespacial , Estados Unidos , Medio Ambiente Extraterrestre
16.
Eye (Lond) ; 38(14): 2701-2710, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38858520

RESUMEN

Multiple Sclerosis (MS) is a chronic autoimmune demyelinating disease of the central nervous system (CNS) characterized by inflammation, demyelination, and axonal damage. Early recognition and treatment are important for preventing or minimizing the long-term effects of the disease. Current gold standard modalities of diagnosis (e.g., CSF and MRI) are invasive and expensive in nature, warranting alternative methods of detection and screening. Oculomics, the interdisciplinary combination of ophthalmology, genetics, and bioinformatics to study the molecular basis of eye diseases, has seen rapid development through various technologies that detect structural, functional, and visual changes in the eye. Ophthalmic biomarkers (e.g., tear composition, retinal nerve fibre layer thickness, saccadic eye movements) are emerging as promising tools for evaluating MS progression. The eye's structural and embryological similarity to the brain makes it a potentially suitable assessment of neurological and microvascular changes in CNS. In the advent of more powerful machine learning algorithms, oculomics screening modalities such as optical coherence tomography (OCT), eye tracking, and protein analysis become more effective tools aiding in MS diagnosis. Artificial intelligence can analyse larger and more diverse data sets to potentially discover new parameters of pathology for efficiently diagnosing MS before symptom onset. While there is no known cure for MS, the integration of oculomics with current modalities of diagnosis creates a promising future for developing more sensitive, non-invasive, and cost-effective approaches to MS detection and diagnosis.


Asunto(s)
Biomarcadores , Esclerosis Múltiple , Tomografía de Coherencia Óptica , Humanos , Esclerosis Múltiple/diagnóstico , Tomografía de Coherencia Óptica/métodos , Oftalmopatías/diagnóstico , Oftalmopatías/diagnóstico por imagen , Lágrimas/fisiología , Tecnología de Seguimiento Ocular
17.
Vision (Basel) ; 8(2)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38804356

RESUMEN

The ability to make on-field, split-second decisions is critical for National Football League (NFL) game officials. Multiple principles in visual function are critical for accuracy and precision of these play calls, including foveation time and unobstructed line of sight, static visual acuity, dynamic visual acuity, vestibulo-ocular reflex, and sufficient visual field. Prior research has shown that a standardized curriculum in these neuro-ophthalmic principles have demonstrated validity and self-rated improvements in understanding, confidence, and likelihood of future utilization by NFL game officials to maximize visual performance during officiating. Virtual reality technology may also be able to help optimize understandings of specific neuro-ophthalmic principles and simulate real-life gameplay. Personal communication between authors and NFL officials and leadership have indicated that there is high interest in 3D virtual on-field training for NFL officiating. In this manuscript, we review the current and past research in this space regarding a neuro-ophthalmic curriculum for NFL officials. We then provide an overview our current visualization engineering process in taking real-life NFL gameplay 2D data and creating 3D environments for virtual reality gameplay training for football officials to practice plays that highlight neuro-ophthalmic principles. We then review in-depth the physiology behind these principles and discuss strategies to implement these principles into virtual reality for football officiating.

20.
Surv Ophthalmol ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38762072

RESUMEN

Generative AI has revolutionized medicine over the past several years. A generative adversarial network (GAN) is a deep learning framework that has become a powerful technique in medicine, particularly in ophthalmology and image analysis. In this paper we review the current ophthalmic literature involving GANs, and highlight key contributions in the field. We briefly touch on ChatGPT, another application of generative AI, and its potential in ophthalmology. We also explore the potential uses for GANs in ocular imaging, with a specific emphasis on 3 primary domains: image enhancement, disease identification, and generating of synthetic data. PubMed, Ovid MEDLINE, Google Scholar were searched from inception to October 30, 2022 to identify applications of GAN in ophthalmology. A total of 40 papers were included in this review. We cover various applications of GANs in ophthalmic-related imaging including optical coherence tomography, orbital magnetic resonance imaging, fundus photography, and ultrasound; however, we also highlight several challenges, that resulted in the generation of inaccurate and atypical results during certain iterations. Finally, we examine future directions and considerations for generative AI in ophthalmology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...