Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(3): 2219-2226, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38207218

RESUMEN

Marine organisms produce biological materials through the complex self-assembly of protein condensates in seawater, but our understanding of the mechanisms of microstructure evolution and maturation remains incomplete. Here, we show that critical processing attributes of mussel holdfast proteins can be captured by the design of an amphiphilic, fluorescent polymer (PECHIA) consisting of a polyepichlorohydrin backbone grafted with 1-imidazolium acetonitrile. Aqueous solutions of PECHIA were extruded into seawater, wherein the charge repulsion of PECHIA is screened by high salinity, facilitating interfacial condensation via enhanced "cation-dipole" interactions. Diffusion of seawater into the PECHIA solution caused droplets to form immiscibly within the PECHIA phase (i.e., inverse coacervation). Simultaneously, weakly alkaline seawater catalyzes nitrile cyclization and time-dependent solidification of the PECHIA phase, leading to hierarchically porous membranes analogous to porous architectures in mussel plaques. In contrast to conventional polymer processing technologies, processing of this biomimetic polymer required neither organic solvents nor heating and enabled the template-free production of hollow spheres and fibers over a wide range of salinities.


Asunto(s)
Bivalvos , Proteínas , Animales , Proteínas/química , Agua de Mar , Agua , Bivalvos/química , Polímeros
2.
Biomacromolecules ; 24(9): 4190-4198, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37603820

RESUMEN

Polyelectrolyte coacervates, with their greater-than-water density, low interfacial energy, shear thinning viscosity, and ability to undergo structural arrest, mediate the formation of diverse load-bearing macromolecular materials in living organisms as well as in industrial material fabrication. Coacervates, however, have other useful attributes that are challenging to study given the metastability of coacervate colloidal droplets and a lack of suitable analytical methods. We adopt solution electrochemistry and nuclear magnetic resonance measurements to obtain remarkable insights about coacervates as solvent media for low-molecular-weight catechols. When catechols are added to dispersions of coacervated polyelectrolytes, there are two significant consequences: (1) catechols preferentially partition up to 260-fold into the coacervate phase, and (2) coacervates stabilize catechol redox potentials by up to +200 mV relative to the equilibrium solution. The results suggest that the relationship between phase-separated polyelectrolytes and their client molecules is distinct from that existing in aqueous solution and has the potential for insulating many redox-unstable chemicals.


Asunto(s)
Catecoles , Programas Informáticos , Humanos , Polielectrolitos , Solubilidad , Peso Molecular , Agua
3.
Biomacromolecules ; 24(7): 3032-3042, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37294315

RESUMEN

Whether and how intramolecular crosslinks in polymeric materials contribute to mechanical properties is debated in both experimental and theoretical arenas. The tethering threads of Octopus bimaculoides egg cases provide a rare window to investigate this question in a biomaterial. The only detectable component of the load-bearing fibers in octopus threads is a 135 kDa protein, octovafibrin, comprising 29 tandem repeats of epidermal growth factor (EGF) each of which contains 3 intramolecular disulfide linkages. The N- and C-terminal C-type lectins mediate linear end-to-end octovafibrin self-assembly. Mechanical testing of threads shows that the regularly spaced disulfide linkages result in improved stiffness, toughness, and energy dissipation. In response to applied loads, molecular dynamics and X-ray scattering show that EGF-like domains deform by recruiting two hidden length ß-sheet structures nested between the disulfides. The results of this study further the understanding of intramolecular crosslinking in polymers and provide a foundation for the mechanical contributions of EGF domains to the extracellular matrix.


Asunto(s)
Factor de Crecimiento Epidérmico , Octopodiformes , Animales , Factor de Crecimiento Epidérmico/química , Secuencia de Aminoácidos , Matriz Extracelular/metabolismo , Disulfuros/química
4.
Biomacromolecules ; 23(7): 2878-2890, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35748755

RESUMEN

Nanoscopic structural control with long-range ordering remains a profound challenge in nanomaterial fabrication. The nanoarchitectured egg cases of elasmobranchs rely on a hierarchically ordered latticework for their protective function─serving as an exemplary system for nanoscale self-assembly. Although the proteinaceous precursors are known to undergo intermediate liquid crystalline phase transitions before being structurally arrested in the final nanolattice architecture, their sequences have so far remained unknown. By leveraging RNA-seq and proteomic techniques, we identified a cohort of nanolattice-forming proteins comprising a collagenous midblock flanked by domains typically associated with innate immunity and network-forming collagens. Structurally homologous proteins were found in the genomes of other egg-case-producing cartilaginous fishes, suggesting a conserved molecular self-assembly strategy. The identity and stabilizing role of cross-links were subsequently elucidated using mass spectrometry and in situ small-angle X-ray scattering. Our findings provide a new design approach for protein-based liquid crystalline elastomers and the self-assembly of nanolattices.


Asunto(s)
Cristales Líquidos , Tiburones , Animales , Colágeno , Humanos , Cristales Líquidos/química , Transición de Fase , Proteómica
5.
J R Soc Interface ; 19(188): 20210828, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35317655

RESUMEN

Mussels use byssal threads to secure themselves to rocks and as shock absorbers during cyclic loading from wave motion. Byssal threads combine high strength and toughness with extensibility of nearly 200%. Researchers attribute tensile properties of byssal threads to their elaborate multi-domain collagenous protein cores. Because the elastic properties have been previously scrutinized, we instead examined byssal thread viscoelastic behaviour, which is essential for withstanding cyclic loading. By targeting protein domains in the collagenous core via chemical treatments, stress relaxation experiments provided insights on domain contributions and were coupled with in situ small-angle X-ray scattering to investigate relaxation-specific molecular reorganizations. Results show that when silk-like domains in the core were disrupted, the stress relaxation of the threads decreased by nearly 50% and lateral molecular spacing also decreased, suggesting that these domains are essential for energy dissipation and assume a compressed molecular rearrangement when disrupted. A generalized Maxwell model was developed to describe the stress relaxation response. The model predicts that maximal damping (energy dissipation) occurs at around 0.1 Hz which closely resembles the wave frequency along the California coast and implies that these materials may be well adapted to the cyclic loading of the ambient conditions.


Asunto(s)
Bivalvos , Animales , Bivalvos/química , Seda , Programas Informáticos
6.
Nano Lett ; 21(19): 8080-8085, 2021 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-34585939

RESUMEN

Structural versatility and multifunctionality of biological materials have resulted in countless bioinspired strategies seeking to emulate the properties of nature. The nanostructured egg case of swell sharks is one of the toughest permeable membranes known and, thus, presents itself as a model system for materials where the conflicting properties, strength and porosity, are desirable. The egg case possesses an intricately ordered structure that is designed to protect delicate embryos from the external environment while enabling respiratory and metabolic exchange, achieving a tactical balance between conflicting properties. Herein, structural analyses revealed an enabling nanolattice architecture that constitutes a Bouligand-like nanoribbon hierarchical assembly. Three distinct hierarchical architectural adaptations enhance egg case survival: Bouligand-like organization for in-plane isotropic reinforcement, noncylindrical nanoribbons maximizing interfacial stress distribution, and highly ordered nanolattices enabling permeability and lattice-governed toughening mechanisms. These discoveries provide fundamental insights for the improvement of multifunctional membranes, fiber-reinforced soft composites, and mechanical metamaterials.


Asunto(s)
Nanoestructuras , Tiburones , Animales , Permeabilidad , Porosidad
7.
J Phys Chem B ; 125(35): 9999-10008, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34459591

RESUMEN

Improving adhesives for wet surfaces is an ongoing challenge. While the adhesive proteins of marine mussels have inspired many synthetic wet adhesives, the mechanisms of mussel adhesion are still not fully understood. Using surface forces apparatus (SFA) measurements and replica-exchange and umbrella-sampling molecular dynamics simulations, we probed the relationships between the sequence, structure, and adhesion of mussel-inspired peptides. Experimental and computational results reveal that peptides derived from mussel foot protein 3 slow (mfp-3s) containing 3,4-dihydroxyphenylalanine (Dopa), a post-translationally modified variant of tyrosine commonly found in mussel foot proteins, form adhesive monolayers on mica. In contrast, peptides with tyrosine adsorb as weakly adhesive clusters. We further considered simulations of mfp-3s derivatives on a range of hydrophobic and hydrophilic organic and inorganic surfaces (including silica, self-assembled monolayers, and a lipid bilayer) and demonstrated that the chemical character of the target surface and proximity of cationic and hydrophobic residues to Dopa affect peptide adsorption and adhesion. Collectively, our results suggest that conversion of tyrosine to Dopa in hydrophobic, sparsely charged peptides influences peptide self-association and ultimately dictates their adhesive performance.


Asunto(s)
Bivalvos , Dihidroxifenilalanina , Animales , Péptidos , Proteínas , Propiedades de Superficie
8.
Sci Adv ; 6(23): eaaz6486, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32537498

RESUMEN

Catecholic 3,4-dihydroxyphenyl-l-alanine (Dopa) residues in mussel foot proteins (mfps) contribute critically to mussel (Mytilus californianus) plaque adhesion, but only if protected from oxidation at the adhesive-substratum interface. Dopa oxidation is thermodynamically favorable in seawater yet barely detectable in plaques; therefore, we investigated how plaques insulate Dopa-containing mfps against oxidation. Seawater sulfate triggers an mfp3 and mfp6 liquid-liquid phase separation (LLPS). By combining plaque cyclic voltammetry with electrophoresis, mass spectrometry, and redox-exchange chemistry, we show that Dopa-containing mfp3 and mfp6 in phase-separated droplets remain stable despite rapid oxidation in the surrounding equilibrium solution. The results suggest that a cohort of oxidation-prone proteins is endowed with phase-dependent redox stability. Moreover, in forming LLPS compartments, Dopa proteins become reservoirs of chemical energy.

9.
Philos Trans R Soc Lond B Biol Sci ; 374(1784): 20190207, 2019 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-31495304

RESUMEN

Bioadhesion has attracted a sizable research community of scientists and engineers that is striving increasingly for translational outcomes in anti-fouling and bioinspired adhesion initiatives. As bioadhesion is highly context-dependent, attempts to trivialize or gloss over the fundamental physical, chemical and biological sciences involved will compromise the relevance and durability of translation. This article is part of the theme issue 'Transdisciplinary approaches to the study of adhesion and adhesives in biological systems'.


Asunto(s)
Materiales Biomiméticos/química , Adhesión Celular
10.
Philos Trans R Soc Lond B Biol Sci ; 374(1784): 20190202, 2019 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-31495310

RESUMEN

The byssi of sessile mussels have the extraordinary ability to adhere to various surfaces and withstand static and dynamic loadings arising from hostile environmental conditions. Many investigations aimed at understanding the unique properties of byssal thread-plaque structures have been conducted and have inspired the enhancement of fibre coatings and adhesives. However, a systems-level analysis of the mechanical performance of the composite materials is lacking. In this work, we discuss the anatomy of the byssus and the function of each of the three components (the proximal thread portion, the distal thread portion and the adhesive plaque) of its structures. We introduce a basic nonlinear system of springs that describes the contribution of each component to the overall mechanical response and use this model to approximate the elastic modulus of the distal thread portion as well as the plaque, the response of which cannot be isolated through experiment alone. We conclude with a discussion of unresolved questions, highlighting areas of opportunity where additional experimental and theoretical work is needed. This article is part of the theme issue 'Transdisciplinary approaches to the study of adhesion and adhesives in biological systems'.


Asunto(s)
Bivalvos/fisiología , Animales , Fenómenos Biomecánicos , Modelos Biológicos
11.
Langmuir ; 35(48): 15985-15991, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31405280

RESUMEN

The mussel byssus thread is an extremely tough core-shelled fiber that dissipates substantial amounts of energy during tensile loading. The mechanical performance of the shell is critically reliant on 3,4-dihydroxyphenylalanine's (Dopa) ability to form reversible iron-catecholate complexes at pH 8. However, the formation of these coordinate cross-links is undercut by Dopa's oxidation to Dopa-quinone, a spontaneous process at seawater conditions. The large mechanical mismatch between the cuticle and the core lends itself to further complications. Despite these challenges, the mussel byssus thread performs its tethering function over long periods of time. Here, we address these two major questions: (1) how does the mussel slow/prevent oxidation in the cuticle, and (2) how is the mechanical mismatch at the core/shell interface mitigated? By combining a number of microscopy and spectroscopy techniques we have discerned a previously undescribed layer. Our results indicate this interlayer is thiol rich and thus will be called the thiol-rich interlayer (TRL). We propose the TRL serves as a long-lasting redox reservoir as well as a mechanical barrier.

12.
Nat Commun ; 9(1): 3424, 2018 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-30143627

RESUMEN

The mussel cuticle, a thin layer that shields byssal threads from environmental exposure, is a model among high-performance coatings for being both hard and hyper-extensible. However, despite avid interest in translating its features into an engineered material, the mechanisms underlying this performance are manifold and incompletely understood. To deepen our understanding of this biomaterial, we explore here the ultrastructural, scratch-resistant, and mechanical features at the submicrometer scale and relate our observations to individual cuticular components. These investigations show that cuticle nanomechanics are governed by granular microinclusions/nanoinclusions, which, contrary to previous interpretations, are three-fold softer than the surrounding matrix. This adaptation, which is found across several related mussel species, is linked to the level of hydration and presumed to maintain bulk performance during tidal exposures. Given the interest in implementing transfer of biological principles to modern materials, these findings may have noteworthy implications for the design of durable synthetic coatings.


Asunto(s)
Bivalvos , Animales , Materiales Biocompatibles , Fenómenos Biomecánicos , Ecosistema
13.
Soft Matter ; 13(48): 9122-9131, 2017 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-29192930

RESUMEN

We report here that a dense liquid formed by spontaneous condensation, also known as simple coacervation, of a single mussel foot protein-3S-mimicking peptide exhibits properties critical for underwater adhesion. A structurally homogeneous coacervate is deposited on underwater surfaces as micrometer-thick layers, and, after compression, displays orders of magnitude higher underwater adhesion at 2 N m-1 than that reported from thin films of the most adhesive mussel-foot-derived peptides or their synthetic mimics. The increase in adhesion efficiency does not require nor rely on post-deposition curing or chemical processing, but rather represents an intrinsic physical property of the single-component coacervate. Its wet adhesive and rheological properties correlate with significant dehydration, tight peptide packing and restriction in peptide mobility. We suggest that such dense coacervate liquids represent an essential adaptation for the initial priming stages of mussel adhesive deposition, and provide a hitherto untapped design principle for synthetic underwater adhesives.

14.
Science ; 358(6362): 502-505, 2017 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-29074770

RESUMEN

Materials often exhibit a trade-off between stiffness and extensibility; for example, strengthening elastomers by increasing their cross-link density leads to embrittlement and decreased toughness. Inspired by cuticles of marine mussel byssi, we circumvent this inherent trade-off by incorporating sacrificial, reversible iron-catechol cross-links into a dry, loosely cross-linked epoxy network. The iron-containing network exhibits two to three orders of magnitude increases in stiffness, tensile strength, and tensile toughness compared to its iron-free precursor while gaining recoverable hysteretic energy dissipation and maintaining its original extensibility. Compared to previous realizations of this chemistry in hydrogels, the dry nature of the network enables larger property enhancement owing to the cooperative effects of both the increased cross-link density given by the reversible iron-catecholate complexes and the chain-restricting ionomeric nanodomains that they form.

15.
Soft Matter ; 13(40): 7381-7388, 2017 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-28972234

RESUMEN

The proteinaceous byssal plaque-thread structures created by marine mussels exhibit extraordinary load-bearing capability. Although the nanoscopic protein interactions that support interfacial adhesion are increasingly understood, major mechanistic questions about how mussel plaques maintain toughness on supramolecular scales remain unanswered. This study explores the mechanical properties of whole mussel plaques subjected to repetitive loading cycles, with varied recovery times. Mechanical measurements were complemented with scanning electron microscopy to investigate strain-induced structural changes after yield. Multicyclic loading of plaques decreases their low-strain stiffness and introduces irreversible, strain-dependent plastic damage within the plaque microstructure. However, strain history does not compromise critical strength or maximum extension compared with plaques monotonically loaded to failure. These results suggest that a multiplicity of force transfer mechanisms between the thread and plaque-substrate interface allow the plaque-thread structure to accommodate a wide range of extensions as it continues to bear load. This improved understanding of the mussel system at micron-to-millimeter lengthscales offers strategies for including similar fail-safe mechanisms in the design of soft, tough and resilient synthetic structures.


Asunto(s)
Bivalvos/fisiología , Animales , Fenómenos Biomecánicos , Bivalvos/anatomía & histología , Ensayo de Materiales , Soporte de Peso
16.
Adv Mater ; 29(39)2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28833661

RESUMEN

Marine mussels use catechol-rich interfacial mussel foot proteins (mfps) as primers that attach to mineral surfaces via hydrogen, metal coordination, electrostatic, ionic, or hydrophobic bonds, creating a secondary surface that promotes bonding to the bulk mfps. Inspired by this biological adhesive primer, it is shown that a ≈1 nm thick catecholic single-molecule priming layer increases the adhesion strength of crosslinked polymethacrylate resin on mineral surfaces by up to an order of magnitude when compared with conventional primers such as noncatecholic silane- and phosphate-based grafts. Molecular dynamics simulations confirm that catechol groups anchor to a variety of mineral surfaces and shed light on the binding mode of each molecule. Here, a ≈50% toughness enhancement is achieved in a stiff load-bearing polymer network, demonstrating the utility of mussel-inspired bonding for processing a wide range of polymeric interfaces, including structural, load-bearing materials.

18.
J R Soc Interface ; 14(131)2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28592662

RESUMEN

The adaptive attachment of marine mussels to a wide range of substrates in a high-energy, saline environment has been explored for decades and is a significant driver of bioinspired wet adhesion research. Mussel attachment relies on a fibrous holdfast known as the byssus, which is made by a specialized appendage called the foot. Multiple adhesive and structural proteins are rapidly synthesized, secreted and moulded by the foot into holdfast threads. About 10 well-characterized proteins, namely the mussel foot proteins (Mfps), the preCols and the thread matrix proteins, are reported as representing the bulk of these structures. To explore how robust this proposition is, we sequenced the transcriptome of the glandular tissues that produce and secrete the various holdfast components using next-generation sequencing methods. Surprisingly, we found around 15 highly expressed genes that have not previously been characterized, but bear key similarities to the previously defined mussel foot proteins, suggesting additional contribution to byssal function. We verified the validity of these transcripts by polymerase chain reaction, cloning and Sanger sequencing as well as confirming their presence as proteins in the byssus. These newly identified proteins greatly expand the palette of mussel holdfast biochemistry and provide new targets for investigation into bioinspired wet adhesion.


Asunto(s)
Bivalvos/metabolismo , Regulación de la Expresión Génica/fisiología , Proteínas/metabolismo , Adhesividad , Secuencia de Aminoácidos , Animales , Perfilación de la Expresión Génica , Proteínas/química
19.
Nat Chem ; 9(5): 473-479, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28430190

RESUMEN

Cation-π interactions drive the self-assembly and cohesion of many biological molecules, including the adhesion proteins of several marine organisms. Although the origin of cation-π bonds in isolated pairs has been extensively studied, the energetics of cation-π-driven self-assembly in molecular films remains uncharted. Here we use nanoscale force measurements in combination with solid-state NMR spectroscopy to show that the cohesive properties of simple aromatic- and lysine-rich peptides rival those of the strong reversible intermolecular cohesion exhibited by adhesion proteins of marine mussel. In particular, we show that peptides incorporating the amino acid phenylalanine, a functional group that is conspicuously sparing in the sequences of mussel proteins, exhibit reversible adhesion interactions significantly exceeding that of analogous mussel-mimetic peptides. More broadly, we demonstrate that interfacial confinement fundamentally alters the energetics of cation-π-mediated assembly: an insight that should prove relevant for diverse areas, which range from rationalizing biological assembly to engineering peptide-based biomaterials.


Asunto(s)
Adhesivos/química , Materiales Biomiméticos/química , Cationes/química , Péptidos/química , Adhesividad , Adsorción , Silicatos de Aluminio/química , Animales , Bivalvos/química , Dihidroxifenilalanina/química , Enlace de Hidrógeno , Lisina/química , Electricidad Estática
20.
J Exp Biol ; 220(Pt 4): 517-530, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28202646

RESUMEN

Robust adhesion to wet, salt-encrusted, corroded and slimy surfaces has been an essential adaptation in the life histories of sessile marine organisms for hundreds of millions of years, but it remains a major impasse for technology. Mussel adhesion has served as one of many model systems providing a fundamental understanding of what is required for attachment to wet surfaces. Most polymer engineers have focused on the use of 3,4-dihydroxyphenyl-l-alanine (Dopa), a peculiar but abundant catecholic amino acid in mussel adhesive proteins. The premise of this Review is that although Dopa does have the potential for diverse cohesive and adhesive interactions, these will be difficult to achieve in synthetic homologs without a deeper knowledge of mussel biology; that is, how, at different length and time scales, mussels regulate the reactivity of their adhesive proteins. To deposit adhesive proteins onto target surfaces, the mussel foot creates an insulated reaction chamber with extreme reaction conditions such as low pH, low ionic strength and high reducing poise. These conditions enable adhesive proteins to undergo controlled fluid-fluid phase separation, surface adsorption and spreading, microstructure formation and, finally, solidification.


Asunto(s)
Adhesivos/metabolismo , Bivalvos/fisiología , Proteínas/metabolismo , Adhesividad , Adhesivos/análisis , Secuencia de Aminoácidos , Animales , Bivalvos/anatomía & histología , Bivalvos/química , Dihidroxifenilalanina/análisis , Dihidroxifenilalanina/metabolismo , Concentración de Iones de Hidrógeno , Concentración Osmolar , Proteínas/análisis , Resistencia a la Tracción , Humectabilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...