Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 2978, 2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-38316804

RESUMEN

Although knowledge of the composition and genetic diversity of disease vectors is important for their management, this is limiting in many instances. In this study, the population structure and phylogenetic relationship of the two Aedes aegypti subspecies namely Aedes aegypti aegypti (Aaa) and Aedes aegypti formosus (Aaf) in eight geographical areas in Sudan were analyzed using seven microsatellite markers. Hardy-Weinberg Equilibrium (HWE) for the two subspecies revealed that Aaa deviated from HWE among the seven microsatellite loci, while Aaf exhibited departure in five loci and no departure in two loci (A10 and M201). The Factorial Correspondence Analysis (FCA) plots revealed that the Aaa populations from Port Sudan, Tokar, and Kassala clustered together (which is consistent with the unrooted phylogenetic tree), Aaf from Fasher and Nyala populations clustered together, and Gezira, Kadugli, and Junaynah populations also clustered together. The Bayesian cluster analysis structured the populations into two groups suggesting two genetically distinct groups (subspecies). Isolation by distance test revealed a moderate to strong significant correlation between geographical distance and genetic variations (p = 0.003, r = 0.391). The migration network created using divMigrate demonstrated that migration and gene exchange between subspecies populations appear to occur based on their geographical proximity. The genetic structure of the Ae. aegypti subspecies population and the gene flow among them, which may be interpreted as the mosquito vector's capacity for dispersal, were revealed in this study. These findings will help in the improvement of dengue epidemiology research including information on the identity of the target vector/subspecies and the arboviruses vector surveillance program.


Asunto(s)
Aedes , Genética de Población , Animales , Variación Genética , Filogenia , Teorema de Bayes , Sudán , Mosquitos Vectores , Estructuras Genéticas , Repeticiones de Microsatélite/genética
2.
Biotechnol Appl Biochem ; 70(3): 1072-1084, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36567620

RESUMEN

In biomedical implant technology, nanosurface such as titania nanotube arrays (TNA) could provide better cellular adaptation, especially for long-term tissue acceptance response. Mechanotransduction activities of TNA nanosurface could involve the cytoskeleton remodeling mechanism. However, there is no clear insight into TNA mechano-cytoskeleton remodeling activities, especially computational approaches. Epithelial cells have played critical interface between biomedical implant surface and tissue acceptance, particularly for long-term interaction. Therefore, this study investigates genomic responses that are responsible for cell-TNA mechano-stimulus using epithelial cells model. Findings suggested that cell-TNA interaction may improve structural and extracellular matrix (ECM) support on the cells as an adaptive response toward the nanosurface topography. More specifically, the surface topography of the TNA might improve the cell polarity and adhesion properties via the interaction of the plasma membrane and intracellular matrix responses. TNA nanosurface might engross the cytoskeleton remodeling activities for multidirectional cell movement and cellular protrusions on TNA nanosurface. These observations are supported by the molecular docking profiles that determine proteins' in silico binding mechanism on TNA. This active cell-surface revamping would allow cells to adapt to develop a protective barrier toward TNA nanosurface, thus enhancing biocompatibility properties distinctly for long-term interaction. The findings from this study will be beneficial toward nano-molecular knowledge of designing functional nanosurface technology for advanced medical implant applications.


Asunto(s)
Mecanotransducción Celular , Nanotubos , Simulación del Acoplamiento Molecular , Nanotubos/química , Titanio/química , Citoesqueleto , Propiedades de Superficie
3.
Insects ; 13(12)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36555054

RESUMEN

This study investigated the genetic differences between Aedes aegypti subspecies (Aedes aegypti aegypti (Aaa) and Aedes aegypti formosus (Aaf)) from Sudan using the NADH dehydrogenase subunit 4 (ND4) mitochondrial gene marker. Nineteen distinct haplotypes of the ND4 were identified in female Aedes aegypti mosquitoes from the study sites. The phylogenetic relationship of the 19 ND4 haplotypes was demonstrated in a median-joining haplotype network tree with Aaa and Aaf populations found to share three haplotypes. The genetic variance (Pairwise FST values) was estimated and found to range from 0.000 to 0.811. Isolation by distance test revealed that geographical distance was correlated to genetic variation (coefficient value (r) = 0.43). The Polar maximum likelihood tree showed the phylogenetic relationship of 91 female Aaa and Aaf from the study sites, with most of the Aaf haplotypes clustered in one group while most of the Aaa haplotypes gathered in another group, but there was an admixture of the subspecies in both clusters, especially the Aaa cluster. The Spatial Analysis of Molecular Variance (SAMOVA) test revealed that the eight populations clustered into two phylogeographic groups/clusters of the two subspecies populations. The 2 Aedes aegypti subspecies seemed not to be totally separated geographically with gene flow among the populations.

4.
Pathogens ; 10(1)2021 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-33477339

RESUMEN

Aedes aegypti is the most important arboviral disease vector worldwide. In Africa, it exists as two morphologically distinct forms, often referred to as subspecies, Aaa and Aaf. There is a dearth of information on the distribution and genetic diversity of these two forms in Sudan and other African Sahelian region countries. This study aimed to explore the distribution and genetic diversity of Aedes aegypti subspecies using morphology and Cytochrome oxidase-1 mitochondrial marker in a large Sahelian zone in Sudan. An extensive cross-sectional survey of Aedes aegypti in Sudan was performed. Samples collected from eight locations were morphologically identified, subjected to DNA extraction, amplification, sequencing, and analyses. We classified four populations as Aaa and the other four as Aaf. Out of 140 sequence samples, forty-six distinct haplotypes were characterized. The haplotype and nucleotide diversity of the collected samples were 0.377-0.947 and 0.002-0.01, respectively. Isolation by distance was significantly evident (r = 0.586, p = 0.005). The SAMOVA test indicated that all Aaf populations are structured in one group, while the Aaa clustered into two groups. AMOVA showed 53.53% genetic differences within populations and 39.22% among groups. Phylogenetic relationships indicated two clusters in which the two subspecies were structured. Thus, the haplotype network consisted of three clusters.

5.
Trop Life Sci Res ; 28(2): 57-74, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28890761

RESUMEN

Burkholderia pseudomallei is a soil-dwelling bacterium that causes a globally emerging disease called melioidosis. Approximately one third of the in silico annotated genes in its genome are classified as hypothetical genes. This group of genes is difficult to be functionally characterised partly due to the absence of noticeable phenotypes under conventional laboratory settings. A bioinformatic survey of hypothetical genes revealed a gene designated as BPSL3393 that putatively encodes a small protein of 11 kDA with a CoA binding domain. BPSL3393 is conserved in all the B. pseudomallei genomes as well as various in other species within the genus Burkholderia. Taking into consideration that CoA plays a ubiquitous metabolic role in all life forms, characterisation of BPSL3393 may uncover a previously over-looked metabolic feature of B. pseudomallei. The gene was deleted from the genome using a double homologous recombination approach yielding a null mutant. The BPSL3393 mutant showed no difference in growth rate with the wild type under rich and minimal growth conditions. An extensive metabolic phenotyping test was performed involving 95 metabolic substrates. The deletion mutant of BPSL3393 was severely impaired in its ethanolamine metabolism. The growth rate of the mutant was attenuated when ethanolamine was used as the sole carbon source. A transcriptional analysis of the ethanolamine metabolism genes showed that they were down-regulated in the BPSL3393 mutant. This seemed to suggest that BPSL3393 functions as a positive regulator for ethanolamine metabolism.

6.
J Insect Sci ; 14: 163, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25399430

RESUMEN

Cytochrome P450 monooxygenase (P450) is a superfamily of enzymes that is important in metabolism of endogenous and exogenous compounds. In insects, these enzymes confer resistance to insecticides through its metabolic activities. Members of P450 from family 6 in insects are known to play a role in such function. In this study, we have isolated seven novel family 6 P450 from Aedes albopictus (Skuse) (Diptera: Culicidae), a vector of dengue and chikungunya fever. Induction profile of these seven genes was studied using several insecticides and xenobiotics. It was found that deltamethrin and permethrin did not induce expression of any genes. Another insecticide, temephos, inhibited expression of CYP6P15 for fivefold and twofold for CYP6N29, CYP6Y7, and CYP6Z18. In addition, copper II sulfate induced expression of CYP6M17 and CYP6N28 for up to sixfold. Benzothiazole (BZT), a tire leachate induced the expression of CYP6M17 by fourfold, CYP6N28 by sevenfold, but inhibited the expression of CYP6P15 for threefold and CYP6Y7 for twofold. Meanwhile, piperonyl butoxide (PBO) induced the expression CYP6N28 (twofold), while it inhibited the expression of CYP6P15 (fivefold) and CYP6Y7 (twofold). Remarkably, all seven genes were induced two- to eightfold by acetone in larval stage, but not adult stage. Expression of CYP6N28 was twofold higher, while expression of CYP6P15 was 15-fold lower in adult than larva. The other five P450s were not differentially expressed between the larvae and adult. This finding showed that acetone can be a good inducer of P450 in Ae. albopictus. On the other hand, temephos can act as good suppressor of P450, which may affect its own bioefficacy because it needs to be bioactivated by P450. To the best of our knowledge, this is the first report on acetone-inducible P450 in insects. Further study is needed to characterize the mechanisms involved in acetone induction in P450.


Asunto(s)
Aedes/enzimología , Sistema Enzimático del Citocromo P-450/genética , Proteínas de Insectos/genética , Aedes/genética , Animales , Clonación Molecular , Sistema Enzimático del Citocromo P-450/biosíntesis , Inducción Enzimática , Femenino , Proteínas de Insectos/biosíntesis , Insecticidas , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Xenobióticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA