Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 820: 153119, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35041960

RESUMEN

Non-exchangeable K released from soil minerals can reduce radiocesium transfer to plants, as well as exchangeable K. We investigated the effect of non-exchangeable K on radiocesium transfer to soybean, and the non-exchangeable K extraction method most suitable for estimating the transfer risk. In Fukushima Prefecture, Japan, 106 soils were collected from 89 soybean fields during 2014-2018 to analyze non-exchangeable K contents using three methods: boiling nitric acid extraction, tetraphenyl­boron extraction, and mild tetraphenyl­boron extraction. The non-exchangeable K contents quantified by the former two methods were dependent on the amount of micas, which are K-bearing minerals. The non-exchangeable K content by mild tetraphenyl­boron extraction depended on the amount of K fertilizer application and K-fixing minerals but not on micas, indicating that it reflects fertilizer K fixed by the minerals. The soil-to-plant transfer factor of radiocesium was most correlated with the non-exchangeable K content by the mild extraction (rs = -0.67). This correlation was also stronger than that between exchangeable K and the transfer factor (rs = -0.40). As non-exchangeable K content increased, the exchangeable radiocesium fraction decreased, indicating that radiocesium was fixed together with K. Additionally, multiple regression analysis indicated that non-exchangeable K by the mild extraction significantly decreased the transfer factor even if the exchangeable radiocesium fraction was kept constant. Thus, the fixed K was considered to repress radiocesium transfer to soybean through both radiocesium fixation and K supply. With the criterion of total extracted K, the sum of exchangeable and non-exchangeable K, as 65 mg K2O 100 g-1 by the mild extraction, fields with high and low transfer factors were able to be differentiated more effectively than with a current criterion of exchangeable K as 50 mg K2O 100 g-1. The results revealed that mild tetraphenyl­boron extraction is effective for estimating radiocesium transfer to soybean.


Asunto(s)
Accidente Nuclear de Fukushima , Monitoreo de Radiación , Contaminantes Radiactivos del Suelo , Boro/análisis , Radioisótopos de Cesio/análisis , Japón , Potasio/análisis , Contaminantes Radiactivos del Suelo/análisis , Glycine max
2.
J Environ Radioact ; 237: 106687, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34186241

RESUMEN

Field and pot experiments were conducted to evaluate the effectiveness of coarse Finnish phlogopite application to reduce radiocesium uptake by paddy rice (Oryza sativa L.). The application of phlogopite was expected to reduce radiocesium uptake by crops through K supply and radiocesium retention. Three fields were set in Fukushima Prefecture, and coarse (mean particle size of 450 µm) phlogopite from Siilinjärvi (Finland) was applied at a rate of 5 t ha-1. Paddy rice was cultivated for 2-4 successive years. In all fields, the average 137Cs transfer factor (TF) of brown rice harvested from plots with added phlogopite was significantly lower than that of brown rice from plots without added phlogopite over the 2-4-year experiments. TF was decreased by up to 80% following phlogopite application, without an adverse effect on yield. Exchangeable K and soil solution K were higher in the soils with added phlogopite, suggesting K released from phlogopite reduced 137Cs uptake by paddy rice. Moreover, in a pot cultivation experiment, even when 55% of the total K was removed from phlogopite prior to application, the TF in pots with phlogopite application was less than half of that in pots without added phlogopite. The results from the field study and the pot cultivation experiment suggested that the application of Finnish phlogopite is effective to reduce the TF of brown rice. Exchangeable K and tetraphenylborate-extractable-K (TPB-K) at rooting stage, and soil solution K at tillering and heading stages showed significant negative correlation with TF. TPB-K was significantly positively correlated with soil solution K at tillering stage and heading stage, whereas exchangeable K at rooting stage did not exhibit significant correlation with soil solution K at heading stage. The results suggest that TPB-K is more reliable than exchangeable K, which could facilitate as a basis of K fertilizer recommendation for radiocesium-contaminated fields.


Asunto(s)
Oryza , Monitoreo de Radiación , Contaminantes Radiactivos del Suelo , Contaminantes del Suelo , Fertilizantes/análisis , Finlandia , Suelo , Contaminantes del Suelo/análisis , Contaminantes Radiactivos del Suelo/análisis
3.
Sci Total Environ ; 743: 140458, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32758809

RESUMEN

Phytoavailable K in soil is a key to control the transfer factor of radiocesium from soil to brown rice. The transfer factors were determined for paddy fields cultivated in 2017 and 2018 under different K fertilization regimes in Fukushima Prefecture, Japan. Two phytoavailable forms of K, the exchangeable and nonexchangeable K contents were investigated for the surface soil sampled after the transplanting and fertilization as well as after harvest of rice in the same paddy fields. The exchangeable K content largely decreased from after transplanting and fertilization to after harvest, and the exchangeable K of the soil after harvest was negatively correlated with the transfer factor (rs = -0.70, p < .001). Most soil samples after harvest showed that the transfer factors exponentially increased as the exchangeable K decreased; however, some of the samples indicated considerably low transfer factors (<0.005) despite being exchangeable K deficient, i.e., exchangeable K < 25 mg K2O 100 g-1. Even though this value before usual fertilization has been effectively used as a threshold to determine whether supplemental K fertilization is required to reduce the radiocesium content in brown rice, additional screening was needed to estimate this radiocesium transfer more precisely. Thus, we found that not only the exchangeable K but also nonexchangeable K contents had a negative correlation with the transfer factor (rs = -0.60, p < .001) of the soil samples after harvest but were not correlated with each other (rp = -0.10). Furthermore, the results revealed that soil with nonexchangeable K > 50 mg K2O 100 g-1 indicated a considerably low transfer factor, even if exchangeable K deficient. Thus, via our field-scale experiments, we concluded that the criterion nonexchangeable K > 50 mg K2O 100 g-1 can be used as another threshold for use along with that of exchangeable K to differentiate soil with a low radiocesium transfer rate from exchangeable K deficient soil.


Asunto(s)
Accidente Nuclear de Fukushima , Oryza , Monitoreo de Radiación , Contaminantes Radiactivos del Suelo/análisis , Radioisótopos de Cesio/análisis , Japón , Potasio , Suelo
4.
J Environ Radioact ; 218: 106252, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32421576

RESUMEN

The mobility of 137Cs in soil decreases with time owing to fixation by micaceous minerals. Such ageing is a critical parameter for estimating and predicting annual change in 137Cs contamination risk of agricultural products. The decrease in the exchangeable fraction of 137Cs has traditionally been used as an index of the 137Cs ageing. Under field conditions, however, exchangeable 137Cs is influenced by several environmental factors. In this study, we propose a new index to evaluate the 137Cs ageing with minimum influence of environmental factors. The ratio of the exchangeable 137Cs fraction to exchangeable fraction of 133Cs ((137Cs/133Cs)exch) eliminates the influence of environmental factors on exchangeable 137Cs. We assessed the applicability of the (137Cs/133Cs)exch index, using a four-year field study of a rice paddy in allophanic Andosol, starting 200 days after the Fukushima Dai-ichi Nuclear Power Plant accident. The influence of K fertilization was also investigated. The 137Cs and 133Cs exchangeable fractions varied together, indicating that both were similarly controlled by environmental factors. The values of (137Cs/133Cs)exch decreased with time, reflecting 137Cs fixation by the ageing. The half-time of the (137Cs/133Cs)exch decline was 6.6-17.7 years. Relative to K fertilization, the lack of K fertilization seemed to affect the 137Cs ageing in two ways: the early 137Cs fixation progressed more rapidly, probably because fewer competing K+ ions were present, and the long-term ageing process was occasionally hampered, probably by the release of reserve K from micaceous minerals. The (137Cs/133Cs)exch values were similar to the ratio of the 137Cs to 133Cs transfer factor of the rice straw. Thus, we conclude that the (137Cs/133Cs)exch index is reliable for evaluating the 137Cs ageing, decrease in 137Cs mobility caused by the diffusion into micaceous mineral interlayer, in the field.


Asunto(s)
Radioisótopos de Cesio/análisis , Accidente Nuclear de Fukushima , Monitoreo de Radiación , Contaminantes Radiactivos del Suelo , Fertilizantes , Iones , Japón , Minerales , Potasio
5.
J Environ Radioact ; 182: 157-164, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29248741

RESUMEN

After the Fukushima Dai-ichi Nuclear Power Plant accident on March 2011, continuous monitoring of the detailed vertical distribution of radiocesium in soil is required to evaluate the fate of radiocesium and establish strategies for remediation and management of the contaminated land. It is especially important to investigate paddy soil because little knowledge has been accumulated for paddy soil and wetland rice is a major staple in Japan. Therefore, we monitored the vertical distribution of 137Cs in abandoned paddy soil in a planned evacuation zone from June 2011 to March 2016. The decontamination works (i.e., 5 cm of surface soil removal and re-covering with uncontaminated soil) were conducted by the government in 2015. As a result of monitoring, the 137Cs gradually migrated downward with time and the 137Cs concentration in the 0-10 cm soil was almost homogenous in October 2014, although it was non-cultivated. The liner relationship was obtained between the median depth, which is the thickness of a soil layer containing half of the total 137Cs inventory, and the time after the accident, indicating the migration rate was constant (1.3 cm y-1) before the decontamination works. After the decontamination works, the 137Cs concentration in the uppermost surface layer was reduced by 90%, however the total 137Cs inventory was reduced by only 50-70%. It was shown that the efficiency of 137Cs removal by the decontamination works decrease linearly over time in fields like the studied paddy, in which the homogenization of 137Cs concentration occurred. Conversely, the downward migration of 137Cs to subsurface layers deeper than 10 cm (i.e., plowpan layer) with low permeability rarely occurred. It is expected that these unique trends in distribution and migration of 137Cs would be found in abandoned paddy soils with properties similar to the studied soil, sandy loam but poorly drained because of the low permeable plowpan layer, although further validation is necessary.


Asunto(s)
Radioisótopos de Cesio/análisis , Accidente Nuclear de Fukushima , Monitoreo de Radiación , Contaminantes Radiactivos del Suelo/análisis , Contaminantes Radiactivos del Agua/análisis , Agricultura , Japón , Plantas de Energía Nuclear , Oryza , Suelo , Humedales
6.
J Environ Radioact ; 157: 102-12, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27032341

RESUMEN

Cesium-137 derived from the Tokyo Electric Power Company's Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident contaminated large areas of agricultural land in Eastern Japan. Previous studies before the accident have indicated that flooding enhances radiocesium uptake in rice fields. We investigated the influence of water management in combination with fertilizers on (137)Cs concentrations in rice plants at two fields in southern Ibaraki Prefecture. Stable Cs ((133)Cs) in the plants was also determined as an analogue for predicting (137)Cs behavior after long-term aging of soil (137)Cs. The experimental periods comprised 3 y starting from 2012 in one field, and 2 y from 2013 in another field. These fields were divided into three water management sections: a long-flooding section without midsummer drainage, and medial-flooding, and short-flooding sections with one- or two-week midsummer drainage and earlier end of flooding than the long-flooding section. Six or four types of fertilizer subsections (most differing only in potassium application) were nested in each water management section. Generally, the long-flooding treatment led to higher (137)Cs and (133)Cs concentrations in both straw and brown rice than medial- and short-flooding treatments, although there were some notable exceptions in the first experimental year at each site. Effects of differing potassium fertilizer treatments were cumulative; the effects on (137)Cs and (133)Cs concentrations in rice plants were not obvious in 2012 and 2013, but in 2014, these concentrations were highest where potassium fertilizer had been absent and lowest where basal dressings of K had been tripled. The relationship between (137)Cs and (133)Cs in rice plants was not correlative in the first experimental year at each site, but correlation became evident in the subsequent year(s). This study demonstrates a novel finding that omitting midsummer drainage and/or delaying drainage during the grain-filling period enhances uptake of both (137)Cs and (133)Cs.


Asunto(s)
Riego Agrícola , Isótopos de Cesio/metabolismo , Oryza/metabolismo , Contaminantes del Suelo/metabolismo , Fertilizantes , Oryza/efectos de los fármacos , Potasio/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA