Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(17): e2218204121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38621141

RESUMEN

Inherited arrhythmia syndromes (IASs) can cause life-threatening arrhythmias and are responsible for a significant proportion of sudden cardiac deaths (SCDs). Despite progress in the development of devices to prevent SCDs, the precise molecular mechanisms that induce detrimental arrhythmias remain to be fully investigated, and more effective therapies are desirable. In the present study, we screened a large-scale randomly mutagenized mouse library by electrocardiography to establish a disease model of IASs and consequently found one pedigree that exhibited spontaneous ventricular arrhythmias (VAs) followed by SCD within 1 y after birth. Genetic analysis successfully revealed a missense mutation (p.I4093V) of the ryanodine receptor 2 gene to be a cause of the arrhythmia. We found an age-related increase in arrhythmia frequency accompanied by cardiomegaly and decreased ventricular contractility in the Ryr2I4093V/+ mice. Ca2+ signaling analysis and a ryanodine binding assay indicated that the mutant ryanodine receptor 2 had a gain-of-function phenotype and enhanced Ca2+ sensitivity. Using this model, we detected the significant suppression of VA following flecainide or dantrolene treatment. Collectively, we established an inherited life-threatening arrhythmia mouse model from an electrocardiogram-based screen of randomly mutagenized mice. The present IAS model may prove feasible for use in investigating the mechanisms of SCD and assessing therapies.


Asunto(s)
Taquicardia Ventricular , Ratones , Animales , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Arritmias Cardíacas/genética , Flecainida , Mutación Missense , Muerte Súbita Cardíaca , Mutación
2.
Mol Psychiatry ; 28(5): 1932-1945, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36882500

RESUMEN

The BTBR T+Itpr3tf/J (BTBR/J) strain is one of the most valid models of idiopathic autism, serving as a potent forward genetics tool to dissect the complexity of autism. We found that a sister strain with an intact corpus callosum, BTBR TF/ArtRbrc (BTBR/R), showed more prominent autism core symptoms but moderate ultrasonic communication/normal hippocampus-dependent memory, which may mimic autism in the high functioning spectrum. Intriguingly, disturbed epigenetic silencing mechanism leads to hyperactive endogenous retrovirus (ERV), a mobile genetic element of ancient retroviral infection, which increases de novo copy number variation (CNV) formation in the two BTBR strains. This feature makes the BTBR strain a still evolving multiple-loci model toward higher ASD susceptibility. Furthermore, active ERV, analogous to virus infection, evades the integrated stress response (ISR) of host defense and hijacks the transcriptional machinery during embryonic development in the BTBR strains. These results suggest dual roles of ERV in the pathogenesis of ASD, driving host genome evolution at a long-term scale and managing cellular pathways in response to viral infection, which has immediate effects on embryonic development. The wild-type Draxin expression in BTBR/R also makes this substrain a more precise model to investigate the core etiology of autism without the interference of impaired forebrain bundles as in BTBR/J.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Retrovirus Endógenos , Embarazo , Femenino , Humanos , Animales , Ratones , Retrovirus Endógenos/genética , Variaciones en el Número de Copia de ADN , Trastorno Autístico/etiología , Prosencéfalo/metabolismo , Cuerpo Calloso/patología , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/complicaciones , Ratones Endogámicos
3.
Front Mol Biosci ; 9: 1040237, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36419930

RESUMEN

The type 2 Ca2+-dependent activator protein for secretion (CAPS2/CADPS2) regulates dense-core vesicle trafficking and exocytosis and is involved in the regulated release of catecholamines, peptidergic hormones, and neuromodulators. CAPS2 is expressed in the pancreatic exocrine acinar cells that produce and secrete digestive enzymes. However, the functional role of CAPS2 in vesicular trafficking and/or exocytosis of non-regulatory proteins in the exocrine pancreas remains to be determined. Here, we analyzed the morpho-pathological indicators of the pancreatic exocrine pathway in Cadps2-deficient mouse models using histochemistry, biochemistry, and electron microscopy. We used whole exosome sequencing to identify CADPS2 variants in patients with chronic pancreatitis (CP). Caps2/Cadps2-knockout (KO) mice exhibited morphophysiological abnormalities in the exocrine pancreas, including excessive accumulation of secretory granules (zymogen granules) and their amylase content in the cytoplasm, deterioration of the fine intracellular membrane structures (disorganized rough endoplasmic reticulum, dilated Golgi cisternae, and the appearance of empty vesicles and autophagic-like vacuoles), as well as exocrine pancreatic cell injury, including acinar cell atrophy, increased fibrosis, and inflammatory cell infiltration. Pancreas-specific Cadps2 conditional KO mice exhibited pathological abnormalities in the exocrine pancreas similar to the global Cadps2 KO mice, indicating that these phenotypes were caused either directly or indirectly by CAPS2 deficiency in the pancreas. Furthermore, we identified a rare variant in the exon3 coding region of CADPS2 in a non-alcoholic patient with CP and showed that Cadps2-dex3 mice lacking CAPS2 exon3 exhibited symptoms similar to those exhibited by the Cadps2 KO and cKO mice. These results suggest that CAPS2 is critical for the proper functioning of the pancreatic exocrine pathway, and its deficiency is associated with a risk of pancreatic acinar cell pathology.

4.
Sci Rep ; 12(1): 11933, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35831353

RESUMEN

Protocadherin 9 (Pcdh9) is a member of the cadherin superfamily and is uniquely expressed in the vestibular and limbic systems; however, its physiological role remains unclear. Here, we studied the expression of Pcdh9 in the limbic system and phenotypes of Pcdh9-knock-out mice (Pcdh9 KO mice). Pcdh9 mRNA was expressed in the fear extinction neurons that express protein phosphatase 1 regulatory subunit 1 B (Ppp1r1b) in the posterior part of the basolateral amygdala (pBLA), as well as in the Cornu Ammonis (CA) and Dentate Gyrus (DG) neurons of the hippocampus. We show that the Pcdh9 protein was often localised at synapses. Phenotypic analysis of Pcdh9 KO mice revealed no apparent morphological abnormalities in the pBLA but a decrease in the spine number of CA neurons. Further, the Pcdh9 KO mice were related to features such as the abnormal optokinetic response, less approach to novel objects, and reduced fear extinction during recovery from the fear. These results suggest that Pcdh9 is involved in eliciting positive emotional behaviours, possibly via fear extinction neurons in the pBLA and/or synaptic activity in the hippocampal neurons, and normal optokinetic eye movement in brainstem optokinetic system-related neurons.


Asunto(s)
Extinción Psicológica , Miedo , Animales , Ratones , Extinción Psicológica/fisiología , Miedo/fisiología , Hipocampo , Neuronas , Protocadherinas
5.
Reprod Med Biol ; 21(1): e12472, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35765371

RESUMEN

Purpose: Penile research is expected to reveal new targets for treatment and prevention of the complex mechanisms of its disorder including erectile dysfunction (ED). Thus, analyses of the molecular processes of penile ED and continuous erection as priapism are essential issues of reproductive medicine. Methods: By performing mouse N-ethyl-N-nitrosourea mutagenesis and exome sequencing, we established a novel mouse line displaying protruded genitalia phenotype (PGP; priapism-like phenotype) and identified a novel Pitpna gene mutation for PGP. Extensive histological analyses on the Pitpna mutant and intracavernous pressure measurement (ICP) and liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI/MS)/MS analyses were performed. Results: We evaluated the role of phospholipids during erection for the first time and showed the mutants of inducible phenotypes of priapism. Moreover, quantitative analysis using LC-ESI/MS/MS revealed that the level of phosphatidylinositol (PI) was significantly lower in the mutant penile samples. These results imply that PI may contribute to penile erection by PITPα. Conclusions: Our findings suggest that the current mutant is a mouse model for priapism and abnormalities in PI signaling pathways through PITPα may lead to priapism providing an attractive novel therapeutic target in its treatment.

6.
Exp Anim ; 71(4): 433-441, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-35527013

RESUMEN

Mouse models of red blood cell abnormalities are important for understanding the underlying molecular mechanisms of human erythrocytic diseases. DBA.B6-Mha (Microcytic hypochromic anemia) congenic mice were generated from the cross between N-ethyl-N-nitrosourea (ENU)-mutagenized male C57BL/6J and female DBA/2J mice as part of the RIKEN large-scale ENU mutagenesis project. The mice were established by backcrossing with DBA/2J mice for more than 20 generations. These mice showed autosomal-dominant microcytic hypochromic anemia with decreased mean corpuscular volume (MCV) and mean corpuscular hemoglobin (MCH) levels and increased red blood cell distribution width (RDW) and plasma ferritin levels. Linkage analysis indicated that the Mha locus was located within an interval of approximately 1.95-Mb between D16Nut1 (58.35 Mb) and D16Mit185 (60.30 Mb) on mouse chromosome 16. Mutation analysis revealed that DBA.B6-Mha mice had a point mutation (c.921-2A>G) at the acceptor site of intron 4 in the coproporphyrinogen oxidase (Cpox) gene, a heme-synthesizing gene. RT-PCR revealed that the Cpox mRNA in DBA.B6-Mha mice caused splicing errors. Our results suggest that microcytic hypochromic anemia in DBA.B6-Mha mice is owing to impaired heme synthesis caused by splice mutations in Cpox. Therefore, the DBA.B6-Mha mice may be used to elucidate the molecular mechanisms underlying microcytic hypochromic anemia caused by mutations in Cpox. Although low MCV levels are known to confer malarial resistance to the host, there were no marked changes in the susceptibility of DBA.B6-Mha mice to rodent malarial (Plasmodium yoelii 17XL) infection.


Asunto(s)
Anemia Hipocrómica , Coproporfirinógeno Oxidasa , Animales , Femenino , Masculino , Ratones , Anemia Hipocrómica/inducido químicamente , Anemia Hipocrómica/genética , Coproporfirinógeno Oxidasa/genética , Hemo , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Mutación
7.
Exp Anim ; 71(2): 240-251, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34980769

RESUMEN

Forward genetics is a powerful approach based on chromosomal mapping of phenotypes and has successfully led to the discovery of many mouse mutations in genes responsible for various phenotypes. Although crossing between genetically remote strains can produce F2 and backcross mice for chromosomal mapping, the phenotypes are often affected by background effects from the partner strains in genetic crosses. Genetic crosses between substrains might be useful in genetic mapping to avoid genetic background effects. In this study, we investigated single nucleotide polymorphisms (SNPs) available for genetic mapping using substrains of C57BL/6 and BALB/c mice. In C57BL/6 mice, 114 SNP markers were developed and assigned to locations on all chromosomes for full utilization for genetic mapping using genetic crosses between the C57BL/6J and C57BL/6N substrains. Moreover, genetic differences were identified in the 114 SNP markers among the seven C57BL/6 substrains from five production breeders. In addition, 106 SNPs were detected on all chromosomes of BALB/cAJcl and BALB/cByJJcl substrains. These SNPs could be used for genotyping in BALB/cJ, BALB/cAJcl, BALB/cAnNCrlCrlj, and BALB/cCrSlc mice, and they are particularly useful for genetic mapping using crosses between BALB/cByJJcl and other BALB/c substrains. The SNPs characterized in this study can be utilized for genetic mapping to identify the causative mutations of the phenotypes induced by N-ethyl-N-nitrosourea mutagenesis and the SNPs responsible for phenotypic differences between the substrains of C57BL/6 and BALB/c mice.


Asunto(s)
Polimorfismo de Nucleótido Simple , Animales , Cruzamientos Genéticos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Fenotipo
8.
Stem Cell Res Ther ; 12(1): 369, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34187574

RESUMEN

BACKGROUND: The cerebellum is the sensitive region of the brain to developmental abnormalities related to the effects of oxidative stresses. Abnormal cerebellar lobe formation, found in Jun dimerization protein 2 (Jdp2)-knockout (KO) mice, is related to increased antioxidant formation and a reduction in apoptotic cell death in granule cell progenitors (GCPs). Here, we aim that Jdp2 plays a critical role of cerebellar development which is affected by the ROS regulation and redox control. OBJECTIVE: Jdp2-promoter-Cre transgenic mouse displayed a positive signal in the cerebellum, especially within granule cells. Jdp2-KO mice exhibited impaired development of the cerebellum compared with wild-type (WT) mice. The antioxidation controlled gene, such as cystine-glutamate transporter Slc7a11, might be critical to regulate the redox homeostasis and the development of the cerebellum. METHODS: We generated the Jdp2-promoter-Cre mice and Jdp2-KO mice to examine the levels of Slc7a11, ROS levels and the expressions of antioxidation related genes were examined in the mouse cerebellum using the immunohistochemistry. RESULTS: The cerebellum of Jdp2-KO mice displayed expression of the cystine-glutamate transporter Slc7a11, within the internal granule layer at postnatal day 6; in contrast, the WT cerebellum mainly displayed Sla7a11 expression in the external granule layer. Moreover, development of the cerebellar lobes in Jdp2-KO mice was altered compared with WT mice. Expression of Slc7a11, Nrf2, and p21Cip1 was higher in the cerebellum of Jdp2-KO mice than in WT mice. CONCLUSION: Jdp2 is a critical regulator of Slc7a11 transporter during the antioxidation response, which might control the growth, apoptosis, and differentiation of GCPs in the cerebellar lobes. These observations are consistent with our previous study in vitro.


Asunto(s)
Cerebelo , Células-Madre Neurales , Animales , Diferenciación Celular , Ratones , Ratones Noqueados , Ratones Transgénicos
9.
J Pineal Res ; 71(2): e12748, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34085306

RESUMEN

The hormone melatonin is synthesized from serotonin by two enzymatic reactions (AANAT and ASMT/HIOMT) in the pineal gland following a circadian rhythm with low levels during the day and high levels at night. The robust nightly peak of melatonin secretion is an output signal of the circadian clock to the whole organism. However, so far the regulatory roles of endogenous melatonin in mammalian biological rhythms and physiology processes are poorly understood. Here, we establish congenic mouse lines (>N10 generations) that are proficient or deficient in melatonin synthesis (AH+/+ or AH-/- mice, respectively) on the C57BL/6J genetic background by crossing melatonin-proficient MSM/Ms with C57BL/6J. AH+/+ mice displayed robust nightly peak of melatonin secretion and had significantly higher levels of pineal and plasma melatonin vs AH-/- mice. Using this mice model, we investigated the role of endogenous melatonin in regulating multiple biological rhythms, physiological processes, and rhythmic behaviors. In the melatonin-proficient (AH+/+) mice, the rate of re-entrainment of wheel-running activity was accelerated following a 6-hour phase advance of dark onset when comparted with AH-/- mice, suggesting a role of endogenous melatonin in facilitating clock adjustment. Further in the AH+/+ mice, there was a significant decrease in body weight, gonadal weight and reproductive performance, and a significant increase in daily torpor (a hypothermic and hypometabolic state lasting only hours during adverse conditions). Endogenous melatonin, however, had no effect in the modulation of the diurnal rhythm of 2-[125 I]-iodomelatonin receptor expression in the SCN, free-running wheel behavior in constant darkness, life span, spontaneous homecage behaviors, and various types of social-emotional behaviors. The findings also shed light on the role of endogenous melatonin in mice domestication and provide new insights into melatonin's action in reducing energy expenditure during a food shortage. In summary, the congenic mice model generated in this study offers a significant advantage toward understanding of the role of endogenous melatonin in regulating melatonin receptor-mediated rhythm behaviors and physiological functions.


Asunto(s)
Melatonina , Glándula Pineal , Animales , Ritmo Circadiano/fisiología , Melatonina/metabolismo , Ratones , Ratones Congénicos , Ratones Endogámicos C57BL , Glándula Pineal/metabolismo , Reproducción
10.
Nat Commun ; 11(1): 859, 2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32103003

RESUMEN

Pogo transposable element derived with ZNF domain (POGZ) has been identified as one of the most recurrently de novo mutated genes in patients with neurodevelopmental disorders (NDDs), including autism spectrum disorder (ASD), intellectual disability and White-Sutton syndrome; however, the neurobiological basis behind these disorders remains unknown. Here, we show that POGZ regulates neuronal development and that ASD-related de novo mutations impair neuronal development in the developing mouse brain and induced pluripotent cell lines from an ASD patient. We also develop the first mouse model heterozygous for a de novo POGZ mutation identified in a patient with ASD, and we identify ASD-like abnormalities in the mice. Importantly, social deficits can be treated by compensatory inhibition of elevated cell excitability in the mice. Our results provide insight into how de novo mutations on high-confidence ASD genes lead to impaired mature cortical network function, which underlies the cellular pathogenesis of NDDs, including ASD.


Asunto(s)
Trastorno Autístico/genética , Predisposición Genética a la Enfermedad/genética , Malformaciones del Desarrollo Cortical/genética , Mutación , Fenotipo , Transposasas/genética , Adolescente , Animales , Conducta Animal , Encéfalo/patología , Diferenciación Celular , Línea Celular , Proliferación Celular , Femenino , Edición Génica , Técnicas de Silenciamiento del Gen , Heterocigoto , Humanos , Discapacidad Intelectual , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Trastornos del Neurodesarrollo/genética , Neurogénesis , Neuronas/metabolismo
11.
J Neurochem ; 154(1): 25-40, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31587290

RESUMEN

Vanishing white matter disease (VWM) is an autosomal recessive neurological disorder caused by mutation(s) in any subunit of eukaryotic translation initiation factor 2B (eIF2B), an activator of translation initiation factor eIF2. VWM occurs with mutation of the genes encoding eIF2B subunits (EIF2B1, EIF2B2, EIF2B3, EIF2B4, and EIF2B5). However, little is known regarding the underlying pathogenetic mechanisms or how to treat patients with VWM. Here we describe the identification and detailed analysis of a new spontaneous mutant mouse harboring a point mutation in the Eif2b5 gene (p.Ile98Met). Homozygous Eif2b5I98M mutant mice exhibited a small body, abnormal gait, male and female infertility, epileptic seizures, and a shortened lifespan. Biochemical analyses indicated that the mutant eIF2B protein with the Eif2b5I98M mutation decreased guanine nucleotide exchange activity on eIF2, and the level of the endoplasmic reticulum stress marker activating transcription factor 4 was elevated in the 1-month-old Eif2b5I98M brain. Histological analyses indicated up-regulated glial fibrillary acidic protein immunoreactivity in the astrocytes of the Eif2b5I98M forebrain and translocation of Bergmann glia in the Eif2b5I98M cerebellum, as well as increased mRNA expression of an endoplasmic reticulum stress marker, C/EBP homologous protein. Disruption of myelin and clustering of oligodendrocyte progenitor cells were also indicated in the white matter of the Eif2b5I98M spinal cord at 8 months old. Our data show that Eif2b5I98M mutants are a good model for understanding VWM pathogenesis and therapy development. Cover Image for this issue: doi: 10.1111/jnc.14751.


Asunto(s)
Modelos Animales de Enfermedad , Factor 2B Eucariótico de Iniciación/genética , Leucoencefalopatías/genética , Leucoencefalopatías/patología , Neuroglía/patología , Animales , Encéfalo/patología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Mutación Puntual
12.
Dis Model Mech ; 12(9)2019 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-31399478

RESUMEN

Dysfunction of glucose transporter 1 (GLUT1) proteins causes infantile epilepsy, which is designated as a GLUT1 deficiency syndrome (GLUT1DS; OMIM #606777). Patients with GLUT1DS display varied clinical phenotypes, such as infantile seizures, ataxia, severe mental retardation with learning disabilities, delayed development, hypoglycorrhachia, and other varied symptoms. Glut1Rgsc200 mutant mice mutagenized with N-ethyl-N-nitrosourea (ENU) carry a missense mutation in the Glut1 gene that results in amino acid substitution at the 324th residue of the GLUT1 protein. In this study, these mutants exhibited various phenotypes, including embryonic lethality of homozygotes, a decreased cerebrospinal-fluid glucose value, deficits in contextual learning, a reduction in body size, seizure-like behavior and abnormal electroencephalogram (EEG) patterns. During EEG recording, the abnormality occurred spontaneously, whereas the seizure-like phenotypes were not observed at the same time. In sleep-wake analysis using EEG recording, heterozygotes exhibited a longer duration of wake times and shorter duration of non-rapid eye movement (NREM) sleep time. The shortened period of NREM sleep and prolonged duration of the wake period may resemble the sleep disturbances commonly observed in patients with GLUT1DS and other epilepsy disorders. Interestingly, an in vivo kinetic analysis of glucose utilization by positron emission tomography with 2-deoxy-2-[fluorine-18]fluoro-D-glucose imaging revealed that glucose transportation was reduced, whereas hexokinase activity and glucose metabolism were enhanced. These results indicate that a Glut1Rgsc200 mutant is a useful tool for elucidating the molecular mechanisms of GLUT1DS.This article has an associated First Person interview with the joint first authors of the paper.


Asunto(s)
Encéfalo/metabolismo , Errores Innatos del Metabolismo de los Carbohidratos/metabolismo , Errores Innatos del Metabolismo de los Carbohidratos/fisiopatología , Glucosa/metabolismo , Proteínas de Transporte de Monosacáridos/deficiencia , Sueño/fisiología , Vigilia/fisiología , Animales , Reacción de Prevención , Conducta Animal , Peso Corporal , Encéfalo/patología , Errores Innatos del Metabolismo de los Carbohidratos/genética , Modelos Animales de Enfermedad , Electroencefalografía , Pérdida del Embrión/genética , Pérdida del Embrión/patología , Glucosa/líquido cefalorraquídeo , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Heterocigoto , Homocigoto , Cinética , Aprendizaje , Ratones Mutantes , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Actividad Motora , Mutación Missense/genética , Convulsiones/genética , Convulsiones/patología , Convulsiones/fisiopatología , Transcripción Genética
13.
Proc Natl Acad Sci U S A ; 116(32): 16062-16067, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31337678

RESUMEN

The regulatory network of genes and molecules in sleep/wakefulness remains to be elucidated. Here we describe the methodology and workflow of the dominant screening of randomly mutagenized mice and discuss theoretical basis of forward genetics research for sleep in mice. Our high-throughput screening employs electroencephalogram (EEG) and electromyogram (EMG) to stage vigilance states into a wake, rapid eye movement sleep (REMS) and non-REM sleep (NREMS). Based on their near-identical sleep/wake behavior, C57BL/6J (B6J) and C57BL/6N (B6N) are chosen as mutagenized and counter strains, respectively. The total time spent in the wake and NREMS, as well as the REMS episode duration, shows sufficient reproducibility with small coefficients of variance, indicating that these parameters are most suitable for quantitative phenotype-driven screening. Coarse linkage analysis of the quantitative trait, combined with whole-exome sequencing, can identify the gene mutation associated with sleep abnormality. Our simulations calculate the achievable LOD score as a function of the phenotype strength and the numbers of mice examined. A pedigree showing a mild decrease in total wake time resulting from a heterozygous point mutation in the Cacna1a gene is described as an example.


Asunto(s)
Pruebas Genéticas/métodos , Sueño/genética , Vigilia/genética , Animales , Canales de Calcio Tipo N/genética , Simulación por Computador , Cruzamientos Genéticos , Trastornos de Somnolencia Excesiva/genética , Etilnitrosourea , Femenino , Genes Dominantes , Homocigoto , Escala de Lod , Masculino , Ratones Endogámicos C57BL , Mutación/genética , Linaje , Fenotipo , Reproducibilidad de los Resultados
14.
PLoS One ; 14(7): e0220199, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31329649

RESUMEN

Thy28, also known as ThyN1, is a highly conserved nuclear protein. We previously showed that in a chicken mature B cell line, Thy28 binds to the promoter of the gene encoding Pax5, a transcription factor essential for B cell development, and positively regulates its expression. Here, we generated a Thy28-deficient mouse line to analyze its potential role in B cell development in mice. Thy28-deficient mice showed normal development of B cells, and the expression of Pax5 was comparable between wild-type and Thy28-deficient primary B cells. Thus, species-specific mechanisms regulate Pax5 expression and B cell development.


Asunto(s)
Linfocitos B/metabolismo , Proteínas Nucleares/deficiencia , Factor de Transcripción PAX5/genética , Animales , Linfocitos B/citología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Nucleares/genética , Factor de Transcripción PAX5/metabolismo
16.
Commun Biol ; 1: 236, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30588515

RESUMEN

Despite advances in next generation sequencing technologies, determining the genetic basis of ocular disease remains a major challenge due to the limited access and prohibitive cost of human forward genetics. Thus, less than 4,000 genes currently have available phenotype information for any organ system. Here we report the ophthalmic findings from the International Mouse Phenotyping Consortium, a large-scale functional genetic screen with the goal of generating and phenotyping a null mutant for every mouse gene. Of 4364 genes evaluated, 347 were identified to influence ocular phenotypes, 75% of which are entirely novel in ocular pathology. This discovery greatly increases the current number of genes known to contribute to ophthalmic disease, and it is likely that many of the genes will subsequently prove to be important in human ocular development and disease.

17.
Mamm Genome ; 29(9-10): 663-669, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30171338

RESUMEN

Male reproductive anomalies are widely distributed among mammals, and male factors are estimated to contribute to approximately 50% of cases of human infertility. The B10.M/Sgn (B10.M) mouse strain exhibits two adverse reproductive phenotypes: severe teratospermia and male subfertility. Although teratospermia is known to be heritable, the relationship between teratospermia and male subfertility has not been well characterized. The fertility of B10.M male mice is considerably lower (~ 30%) than that of standard laboratory mouse strains (~ 70%). To genetically analyze male subfertility, F2 males were produced by intercrossing the F1 progeny of female B10.M and male C3H/HeN mice. The fertility of each F2 male mouse was assessed based on the outcomes of matings with five females. Statistical analysis of correlations between the two reproductive phenotypes (teratospermia and subfertility) in F2 males (n = 177) revealed that teratospermia is not the cause of male subfertility. Quantitative trait loci (QTL) analysis of the male subfertility phenotype (n = 128) using GigaMUGA markers mapped one significant QTL peak to chromosome 4 at 62.9 centimorgans (cM) with a logarithm of odds score of 11.81 (P < 0.05). We named the QTL locus Mfsf1 (male factor subfertility 1). Further genetic analysis using recombinant males restricted the physical area to 1.53 megabasepairs (Mbp), encompassing 22 protein-coding genes. In addition, we found one significant QTL and one indicative QTL on chromosome 5 and 12, respectively, that interacted with the Mfsf1 locus. Our results demonstrate that genetic dissection of male subfertility in the B10.M strain is a useful model for characterizing the complex genetic mechanisms underlying reproduction and infertility.


Asunto(s)
Mapeo Cromosómico , Infertilidad Masculina/genética , Sitios de Carácter Cuantitativo/genética , Animales , Epistasis Genética , Femenino , Masculino , Ratones , Ratones Endogámicos , Modelos Genéticos , Fenotipo , Carácter Cuantitativo Heredable , Programas Informáticos
18.
Nihon Eiseigaku Zasshi ; 73(2): 97-100, 2018.
Artículo en Japonés | MEDLINE | ID: mdl-29848880

RESUMEN

OBJECTIVES: The developmental origins of health and disease paradigm (DOHaD) is a concept that fetal environmental factors affect adult phenotypes. We performed experiments to evaluate the DOHaD theory in developmental disorders using mouse models. METHODS: In vitro fertilization and embryo transfer techniques were used for mouse production. The AIN93G-control diet, which contains 20% protein (CD), 5% protein-restricted diet (PR), and PR with supplemental folic acid (FA) were provided as experimental diets to mothers. The body weights (BWs) of mothers and offspring, and the blood-clinical biochemistry results of mothers were examined. In addition, gene expression and genomic methylation in the brain of adult offspring and behavioral phenotypes of adult offspring were examined. RESULTS: Pregnant mothers that consumed the protein-restricted diets, namely, PR and FA, exhibited reduction in BW. The values of protein-related parameters determined by blood-clinical biochemistry decreased in the PR fed groups. The BWs of neonates and adult offspring did not change. The offspring exposed to maternal hyponutrition exhibited increased activity in the home cage and enhanced fear and anxiety-like behavior. The adult offspring of the PR-fed group and FA-fed groups exhibited different patterns of mRNA expression and genomic methylation in the brain. CONCLUSIONS: The maternal PR diet affected the progenies' behavioral phenotypes and epigenetic outcomes in the brain. However, the behavioral changes induced by maternal protein restriction were very slight. Hence, interactions between several genetic factors and environmental exposures such as maternal malnutrition may cause developmental and psychiatric disorders.


Asunto(s)
Discapacidades del Desarrollo/etiología , Discapacidades del Desarrollo/psicología , Dieta con Restricción de Proteínas/efectos adversos , Trastornos Nutricionales en el Feto/etiología , Desnutrición/complicaciones , Intercambio Materno-Fetal/fisiología , Complicaciones del Embarazo , Animales , Proteína Axina , Conducta Animal , Peso Corporal , Encéfalo , Metilación de ADN , Discapacidades del Desarrollo/genética , Modelos Animales de Enfermedad , Epigénesis Genética , Miedo , Femenino , Expresión Génica , Fenómenos de Retorno al Lugar Habitual , Humanos , Ratones , Embarazo
19.
Genes Genet Syst ; 93(2): 51-58, 2018 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-29607881

RESUMEN

Melanocytes develop from the vertebrate embryo-specific neural crest, migrate, and localize in various organs, including not only the skin but also several extracutaneous locations such as the heart, inner ear and choroid. Little is known about the functions of extracutaneous melanocytes except for cochlear melanocytes, which are essential for hearing ability. In this study, we focused on the structure of the choroid, in which melanocytes are abundant around the well-developed blood vascular system. By comparing structural differences in the choroid of wild-type and melanocyte-deficient Mitfmi-bw/Mitfmi-bw mutant mice, our observations suggest that choroidal melanocytes contribute to the morphogenesis and/or maintenance of the normal vasculature structure of that tissue.


Asunto(s)
Coroides/fisiología , Melanocitos/fisiología , Animales , Coroides/crecimiento & desarrollo , Ratones , Ratones Endogámicos C57BL , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo , Neovascularización Fisiológica/fisiología
20.
Sci Rep ; 8(1): 1179, 2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29352221

RESUMEN

METTL20 is a seven-ß-strand methyltransferase that is localised to the mitochondria and tri-methylates the electron transfer flavoprotein (ETF) ß subunit (ETFB) at lysines 200 and 203. It has been shown that METTL20 decreases the ability of ETF to extract electrons from medium-chain acyl-coenzyme A (CoA) dehydrogenase (MCAD) and glutaryl-CoA dehydrogenase in vitro. METTL20-mediated methylation of ETFB influences the oxygen consumption rate in permeabilised mitochondria, suggesting that METTL20-mediated ETFB methylation may also play a regulatory role in mitochondrial metabolism. In this study, we generated Mettl20 knockout (KO) mice to uncover the in vivo functions of METTL20. The KO mice were viable, and a loss of ETFB methylation was confirmed. In vitro enzymatic assays revealed that mitochondrial ETF activity was higher in the KO mice than in wild-type mice, suggesting that the KO mice had higher ß-oxidation capacity. Calorimetric analysis showed that the KO mice fed a ketogenic diet had higher oxygen consumption and heat production. A subsequent cold tolerance test conducted after 24 h of fasting indicated that the KO mice had a better ability to maintain their body temperature in cold environments. Thus, METTL20 regulates ETF activity and heat production through lysine methylation when ß-oxidation is highly activated.


Asunto(s)
Ayuno/metabolismo , Cuerpos Cetónicos/metabolismo , Metiltransferasas/metabolismo , Oxidación-Reducción , Termogénesis , Animales , Sistemas CRISPR-Cas , Catálisis , Flavoproteínas Transportadoras de Electrones/metabolismo , Ácidos Grasos/metabolismo , Edición Génica , Humanos , Mutación con Pérdida de Función , Lisina/metabolismo , Metabolómica/métodos , Metilación , Metiltransferasas/genética , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Consumo de Oxígeno , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA