Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
Cell Death Differ ; 31(10): 1267-1284, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39215104

RESUMEN

Lymphotoxin ß receptor (LTßR), a member of the TNF receptor superfamily (TNFR-SF), is essential for development and maturation of lymphoid organs. In addition, LTßR activation promotes carcinogenesis by inducing a proinflammatory secretome. Yet, we currently lack a detailed understanding of LTßR signaling. In this study we discovered the linear ubiquitin chain assembly complex (LUBAC) as a previously unrecognized and functionally crucial component of the native LTßR signaling complex (LTßR-SC). Mechanistically, LUBAC-generated linear ubiquitin chains enable recruitment of NEMO, OPTN and A20 to the LTßR-SC, where they act coordinately to regulate the balance between canonical and non-canonical NF-κB pathways. Thus, different from death receptor signaling, where LUBAC prevents inflammation through inhibition of cell death, in LTßR signaling LUBAC is required for inflammatory signaling by enabling canonical and interfering with non-canonical NF-κB activation. This results in a LUBAC-dependent LTßR-driven inflammatory, protumorigenic secretome. Intriguingly, in liver cancer patients with high LTßR expression, high expression of LUBAC correlates with poor prognosis, providing clinical relevance for LUBAC-mediated inflammatory LTßR signaling.


Asunto(s)
Receptor beta de Linfotoxina , FN-kappa B , Transducción de Señal , Receptor beta de Linfotoxina/metabolismo , Receptor beta de Linfotoxina/genética , FN-kappa B/metabolismo , Humanos , Animales , Ratones , Células HEK293 , Ubiquitina-Proteína Ligasas/metabolismo , Quinasa I-kappa B/metabolismo
2.
Mol Metab ; 87: 101988, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39004142

RESUMEN

OBJECTIVE: Receptor-interacting protein kinase 1 (RIPK1) orchestrates the decision between cell survival and cell death in response to tumor necrosis factor (TNF) and other cytokines. Whereas the scaffolding function of RIPK1 is crucial to prevent TNF-induced apoptosis and necroptosis, its kinase activity is required for necroptosis and partially for apoptosis. Although TNF is a proinflammatory cytokine associated with ß-cell loss in diabetes, the mechanism by which TNF induces ß-cell demise remains unclear. METHODS: Here, we dissected the contribution of RIPK1 scaffold versus kinase functions to ß-cell death regulation using mice lacking RIPK1 specifically in ß-cells (Ripk1ß-KO mice) or expressing a kinase-dead version of RIPK1 (Ripk1D138N mice), respectively. These mice were challenged with streptozotocin, a model of autoimmune diabetes. Moreover, Ripk1ß-KO mice were further challenged with a high-fat diet to induce hyperglycemia. For mechanistic studies, pancreatic islets were subjected to various killing and sensitising agents. RESULTS: Inhibition of RIPK1 kinase activity (Ripk1D138N mice) did not affect the onset and progression of hyperglycemia in a type 1 diabetes model. Moreover, the absence of RIPK1 expression in ß-cells did not affect normoglycemia under basal conditions or hyperglycemia under diabetic challenges. Ex vivo, primary pancreatic islets are not sensitised to TNF-induced apoptosis and necroptosis in the absence of RIPK1. Intriguingly, we found that pancreatic islets display high levels of the antiapoptotic cellular FLICE-inhibitory protein (cFLIP) and low levels of apoptosis (Caspase-8) and necroptosis (RIPK3) components. Cycloheximide treatment, which led to a reduction in cFLIP levels, rendered primary islets sensitive to TNF-induced cell death which was fully blocked by caspase inhibition. CONCLUSIONS: Unlike in many other cell types (e.g., epithelial, and immune), RIPK1 is not required for cell death regulation in ß-cells under physiological conditions or diabetic challenges. Moreover, in vivo and in vitro evidence suggest that pancreatic ß-cells do not undergo necroptosis but mainly caspase-dependent death in response to TNF. Last, our results show that ß-cells have a distinct mode of regulation of TNF-cytotoxicity that is independent of RIPK1 and that may be highly dependent on cFLIP.


Asunto(s)
Apoptosis , Hiperglucemia , Células Secretoras de Insulina , Ratones Noqueados , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Animales , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Células Secretoras de Insulina/metabolismo , Ratones , Hiperglucemia/metabolismo , Necroptosis , Ratones Endogámicos C57BL , Diabetes Mellitus Experimental/metabolismo , Masculino , Muerte Celular , Factor de Necrosis Tumoral alfa/metabolismo
3.
Cell Death Differ ; 31(7): 897-909, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38783091

RESUMEN

Necroptosis is a caspase-independent modality of cell death implicated in many inflammatory pathologies. The execution of this pathway requires the formation of a cytosolic platform that comprises RIPK1 and RIPK3 which, in turn, mediates the phosphorylation of the pseudokinase MLKL (S345 in mouse). The activation of this executioner is followed by its oligomerisation and accumulation at the plasma-membrane where it leads to cell death via plasma-membrane destabilisation and consequent permeabilisation. While the biochemical and cellular characterisation of these events have been amply investigated, the study of necroptosis involvement in vivo in animal models is currently limited to the use of Mlkl-/- or Ripk3-/- mice. Yet, even in many of the models in which the involvement of necroptosis in disease aetiology has been genetically demonstrated, the fundamental in vivo characterisation regarding the question as to which tissue(s) and specific cell type(s) therein is/are affected by the pathogenic necroptotic death are missing. Here, we describe and validate an immunohistochemistry and immunofluorescence-based method to reliably detect the phosphorylation of mouse MLKL at serine 345 (pMLKL-S345). We first validate the method using tissues derived from mice in which Caspase-8 (Casp8) or FADD are specifically deleted from keratinocytes, or intestinal epithelial cells, respectively. We next demonstrate the presence of necroptotic activation in the lungs of SARS-CoV-infected mice and in the skin and spleen of mice bearing a Sharpin inactivating mutation. Finally, we exclude necroptosis occurrence in the intestines of mice subjected to TNF-induced septic shock. Importantly, by directly comparing the staining of pMLKL-345 with that of cleaved Caspase-3 staining in some of these models, we identify spatio-temporal and functional differences between necroptosis and apoptosis supporting a role of RIPK3 in inflammation independently of MLKL versus the role of RIPK3 in activation of necroptosis.


Asunto(s)
Necroptosis , Proteínas Quinasas , Animales , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Ratones , Fosforilación , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Caspasa 8/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados
4.
Cell Death Differ ; 31(5): 544-557, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38514848

RESUMEN

The dysregulated immune response and inflammation resulting in severe COVID-19 are still incompletely understood. Having recently determined that aberrant death-ligand-induced cell death can cause lethal inflammation, we hypothesized that this process might also cause or contribute to inflammatory disease and lung failure following SARS-CoV-2 infection. To test this hypothesis, we developed a novel mouse-adapted SARS-CoV-2 model (MA20) that recapitulates key pathological features of COVID-19. Concomitantly with occurrence of cell death and inflammation, FasL expression was significantly increased on inflammatory monocytic macrophages and NK cells in the lungs of MA20-infected mice. Importantly, therapeutic FasL inhibition markedly increased survival of both, young and old MA20-infected mice coincident with substantially reduced cell death and inflammation in their lungs. Intriguingly, FasL was also increased in the bronchoalveolar lavage fluid of critically-ill COVID-19 patients. Together, these results identify FasL as a crucial host factor driving the immuno-pathology that underlies COVID-19 severity and lethality, and imply that patients with severe COVID-19 may significantly benefit from therapeutic inhibition of FasL.


Asunto(s)
COVID-19 , Modelos Animales de Enfermedad , Proteína Ligando Fas , SARS-CoV-2 , Animales , Ratones , Líquido del Lavado Bronquioalveolar , COVID-19/patología , COVID-19/inmunología , COVID-19/metabolismo , COVID-19/virología , COVID-19/mortalidad , Proteína Ligando Fas/metabolismo , Inflamación/patología , Inflamación/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Pulmón/patología , Pulmón/virología , Pulmón/metabolismo , Macrófagos/metabolismo , Macrófagos/patología , Ratones Endogámicos C57BL
5.
EMBO J ; 43(6): 904-930, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38337057

RESUMEN

Mitochondrial outer membrane permeabilisation (MOMP) is often essential for apoptosis, by enabling cytochrome c release that leads to caspase activation and rapid cell death. Recently, MOMP has been shown to be inherently pro-inflammatory with emerging cellular roles, including its ability to elicit anti-tumour immunity. Nonetheless, how MOMP triggers inflammation and how the cell regulates this remains poorly defined. We find that upon MOMP, many proteins localised either to inner or outer mitochondrial membranes are ubiquitylated in a promiscuous manner. This extensive ubiquitylation serves to recruit the essential adaptor molecule NEMO, leading to the activation of pro-inflammatory NF-κB signalling. We show that disruption of mitochondrial outer membrane integrity through different means leads to the engagement of a similar pro-inflammatory signalling platform. Therefore, mitochondrial integrity directly controls inflammation, such that permeabilised mitochondria initiate NF-κB signalling.


Asunto(s)
FN-kappa B , Ubiquitina , Humanos , FN-kappa B/genética , FN-kappa B/metabolismo , Ubiquitina/metabolismo , Membranas Mitocondriales/metabolismo , Mitocondrias/metabolismo , Apoptosis/fisiología , Inflamación/metabolismo
6.
Cell Death Differ ; 31(1): 28-39, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38001254

RESUMEN

The ability of cells to mount an interferon response to virus infections depends on intracellular nucleic acid sensing pattern recognition receptors (PRRs). RIG-I is an intracellular PRR that binds short double-stranded viral RNAs to trigger MAVS-dependent signalling. The RIG-I/MAVS signalling complex requires the coordinated activity of multiple kinases and E3 ubiquitin ligases to activate the transcription factors that drive type I and type III interferon production from infected cells. The linear ubiquitin chain assembly complex (LUBAC) regulates the activity of multiple receptor signalling pathways in both ligase-dependent and -independent ways. Here, we show that the three proteins that constitute LUBAC have separate functions in regulating RIG-I signalling. Both HOIP, the E3 ligase capable of generating M1-ubiquitin chains, and LUBAC accessory protein HOIL-1 are required for viral RNA sensing by RIG-I. The third LUBAC component, SHARPIN, is not required for RIG-I signalling. These data cement the role of LUBAC as a positive regulator of RIG-I signalling and as an important component of antiviral innate immune responses.


Asunto(s)
Virus ARN , Ubiquitina-Proteína Ligasas , Ubiquitinación , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Transducción de Señal , Proteína 58 DEAD Box/genética , Virus ARN/metabolismo
7.
J Clin Invest ; 133(21)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37606995

RESUMEN

The discovery of frequent 8p11-p12 amplifications in squamous cell lung cancer (SQLC) has fueled hopes that FGFR1, located inside this amplicon, might be a therapeutic target. In a clinical trial, only 11% of patients with 8p11 amplification (detected by FISH) responded to FGFR kinase inhibitor treatment. To understand the mechanism of FGFR1 dependency, we performed deep genomic characterization of 52 SQLCs with 8p11-p12 amplification, including 10 tumors obtained from patients who had been treated with FGFR inhibitors. We discovered somatically altered variants of FGFR1 with deletion of exons 1-8 that resulted from intragenic tail-to-tail rearrangements. These ectodomain-deficient FGFR1 variants (ΔEC-FGFR1) were expressed in the affected tumors and were tumorigenic in both in vitro and in vivo models of lung cancer. Mechanistically, breakage-fusion-bridges were the source of 8p11-p12 amplification, resulting from frequent head-to-head and tail-to-tail rearrangements. Generally, tail-to-tail rearrangements within or in close proximity upstream of FGFR1 were associated with FGFR1 dependency. Thus, the genomic events shaping the architecture of the 8p11-p12 amplicon provide a mechanistic explanation for the emergence of FGFR1-driven SQLC. Specifically, we believe that FGFR1 ectodomain-deficient and FGFR1-centered amplifications caused by tail-to-tail rearrangements are a novel somatic genomic event that might be predictive of therapeutically relevant FGFR1 dependency.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Amplificación de Genes , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Células Epiteliales/metabolismo
8.
Sci Adv ; 9(30): eadg2829, 2023 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-37494451

RESUMEN

Cell death coordinates repair programs following pathogen attack and tissue injury. However, aberrant cell death can interfere with such programs and cause organ failure. Cellular FLICE-like inhibitory protein (cFLIP) is a crucial regulator of cell death and a substrate of Caspase-8. However, the physiological role of cFLIP cleavage by Caspase-8 remains elusive. Here, we found an essential role for cFLIP cleavage in restraining cell death in different pathophysiological scenarios. Mice expressing a cleavage-resistant cFLIP mutant, CflipD377A, exhibited increased sensitivity to severe acute respiratory syndrome coronavirus (SARS-CoV)-induced lethality, impaired skin wound healing, and increased tissue damage caused by Sharpin deficiency. In vitro, abrogation of cFLIP cleavage sensitizes cells to tumor necrosis factor(TNF)-induced necroptosis and apoptosis by favoring complex-II formation. Mechanistically, the cell death-sensitizing effect of the D377A mutation depends on glutamine-469. These results reveal a crucial role for cFLIP cleavage in controlling the amplitude of cell death responses occurring upon tissue stress to ensure the execution of repair programs.


Asunto(s)
Apoptosis , Virosis , Animales , Ratones , Caspasa 8/genética , Piel/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
9.
Front Med (Lausanne) ; 10: 1129288, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37168268

RESUMEN

Background: Symptoms lasting longer than 12 weeks after severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection are called post-coronavirus disease (COVID) syndrome (PCS). The identification of new biomarkers that predict the occurrence or course of PCS in terms of a post-viral syndrome is vital. T-cell dysfunction, cytokine imbalance, and impaired autoimmunity have been reported in PCS. Nevertheless, there is still a lack of conclusive information on the underlying mechanisms due to, among other things, a lack of controlled study designs. Methods: Here, we conducted a prospective, controlled study to characterize the humoral and cellular immune response in unvaccinated patients with and without PCS following SARS-CoV-2 infection over 7 months and unexposed donors. Results: Patients with PCS showed as early as 6 weeks and 7 months after symptom onset significantly increased frequencies of SARS-CoV-2-specific CD4+ and CD8+ T-cells secreting IFNγ, TNF, and expressing CD40L, as well as plasmacytoid dendritic cells (pDC) with an activated phenotype. Remarkably, the immunosuppressive counterparts type 1 regulatory T-cells (TR1: CD49b/LAG-3+) and IL-4 were more abundant in PCS+. Conclusion: This work describes immunological alterations between inflammation and immunosuppression in COVID-19 convalescents with and without PCS, which may provide potential directions for future epidemiological investigations and targeted treatments.

10.
Cancers (Basel) ; 15(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36765925

RESUMEN

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a cytokine produced and secreted by immune cells in response to an infection, often in response to interferon (IFN) stimulation. In cancer, it has also been shown that IFN stimulates the production of TRAIL, and it has been proposed that this TRAIL can induce apoptosis in an autocrine or paracrine manner in different cancer cells. Yet, the mechanism mediating TRAIL upregulation and the implications of TRAIL as an apoptotic molecule in cancer cells are still poorly understood. We show here that in certain cancer cells, TRAIL is upregulated by enhancer clusters, potent genomic regulatory regions containing densely packed enhancers that have combinatorial and additive activity and that are usually found to be associated with cancer-promoting genes. Moreover, we found that TRAIL upregulation by IFNα is mediated by these enhancer clusters in breast and lung cancer cells. Surprisingly, IFNα stimulation leads to the intracellular accumulation of TRAIL protein in these cancer cells. Consequently, this TRAIL is not capable of inducing apoptosis. Our study provides novel insights into the mechanism behind the interferon-mediated upregulation of TRAIL and its protein accumulation in cancer cells. Further investigation is required to understand the role of intracellular TRAIL or depict the mechanisms mediating its apoptosis impairment in cancer cells.

11.
Cell Death Differ ; 30(2): 237-249, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36195672

RESUMEN

Tumor necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL) can induce apoptosis in a wide variety of cancer cells, both in vitro and in vivo, importantly without killing any essential normal cells. These findings formed the basis for the development of TRAIL-receptor agonists (TRAs) for cancer therapy. However, clinical trials conducted with different types of TRAs have, thus far, afforded only limited therapeutic benefit, as either the respectively chosen agonist showed insufficient anticancer activity or signs of toxicity, or the right TRAIL-comprising combination therapy was not employed. Therefore, in this review we will discuss molecular determinants of TRAIL resistance, the most promising TRAIL-sensitizing agents discovered to date and, importantly, whether any of these could also prove therapeutically efficacious upon cancer relapse following conventional first-line therapies. We will also discuss the more recent progress made with regards to the clinical development of highly active non-immunogenic next generation TRAs. Based thereupon, we next propose how TRAIL resistance might be successfully overcome, leading to the possible future development of highly potent, cancer-selective combination therapies that are based on our current understanding of biology TRAIL-induced cell death. It is possible that such therapies may offer the opportunity to tackle one of the major current obstacles to effective cancer therapy, namely overcoming chemo- and/or targeted-therapy resistance. Even if this were achievable only for certain types of therapy resistance and only for particular types of cancer, this would be a significant and meaningful achievement.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Apoptosis , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Ligando Inductor de Apoptosis Relacionado con TNF/uso terapéutico , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
12.
EMBO Mol Med ; 14(8): e15888, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35785445

RESUMEN

Durable cell-mediated immune responses require efficient innate immune signaling and the release of pro-inflammatory cytokines. How precisely mRNA vaccines trigger innate immune cells for shaping antigen specific adaptive immunity remains unknown. Here, we show that SARS-CoV-2 mRNA vaccination primes human monocyte-derived macrophages for activation of the NLRP3 inflammasome. Spike protein exposed macrophages undergo NLRP3-driven pyroptotic cell death and subsequently secrete mature interleukin-1ß. These effects depend on activation of spleen tyrosine kinase (SYK) coupled to C-type lectin receptors. Using autologous cocultures, we show that SYK and NLRP3 orchestrate macrophage-driven activation of effector memory T cells. Furthermore, vaccination-induced macrophage priming can be enhanced with repetitive antigen exposure providing a rationale for prime-boost concepts to augment innate immune signaling in SARS-CoV-2 vaccination. Collectively, these findings identify SYK as a regulatory node capable of differentiating between primed and unprimed macrophages, which modulate spike protein-specific T cell responses.


Asunto(s)
COVID-19 , Proteína con Dominio Pirina 3 de la Familia NLR , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Inmunidad Innata , Inflamasomas/metabolismo , Interleucina-1beta , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Tirosina Quinasas/metabolismo , ARN Mensajero/genética , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Quinasa Syk , Vacunación
13.
Semin Cancer Biol ; 86(Pt 2): 834-850, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35671877

RESUMEN

The development of immune checkpoint inhibitors (ICI) offers novel treatment possibilities for solid cancers, with the crucial benefit of providing higher cure rates. These agents have become part of standard treatments in the metastatic and adjuvant setting for select cancers, such as melanoma, non-small cell lung cancer (NSCLC) or urological malignancies. Currently, there is ample clinical interest in employing ICI in a neoadjuvant setting with a curative intent. This approach is especially supported by the scientific rationale that ICI primarily stimulate the host immune system to eradicate tumor cells, rather than being inherently cytotoxic. Aside from tumor downstaging, neoadjuvant immunotherapy offers the potential of an in situ cancer vaccination, leading to a systemic adjuvant immunological effect after tumor resection. Moreover, preclinical data clearly demonstrate a synergistic effect of ICI with radiotherapy (RT), chemoradiotherapy (CRT) or chemotherapy (ChT). This review harmonizes preclinical concepts with real world data (RWD) in the field of neoadjuvant ICI in gastrointestinal (GI) cancers and discusses their limitations. We believe this is a crucial approach, since up to now, neoadjuvant strategies have been primarily developed by clinicians, whereas the advances in immunotherapy primarily originate from preclinical research. Currently there is limited published data on neoadjuvant ICI in GI cancers, even though neoadjuvant treatments including RT, CRT or ChT are frequently employed in locally advanced/oligometastatic GI cancers (i.e. rectal, pancreatic, esophagus, stomach, etc.). Utilizing established therapies in combination with ICI provides an abundance of opportunities for innovative treatment regimens to further improve survival rates.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Gastrointestinales , Neoplasias Pulmonares , Humanos , Terapia Neoadyuvante , Carcinoma de Pulmón de Células no Pequeñas/patología , Nivel de Atención , Neoplasias Pulmonares/patología , Inmunoterapia , Neoplasias Gastrointestinales/terapia
14.
Proc Natl Acad Sci U S A ; 119(17): e2110557119, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35442775

RESUMEN

Anticancer drug development campaigns often fail due to an incomplete understanding of the therapeutic index differentiating the efficacy of the agent against the cancer and its on-target toxicities to the host. To address this issue, we established a versatile preclinical platform in which genetically defined cancers are produced using somatic tissue engineering in transgenic mice harboring a doxycycline-inducible short hairpin RNA against the target of interest. In this system, target inhibition is achieved by the addition of doxycycline, enabling simultaneous assessment of efficacy and toxicity in the same animal. As proof of concept, we focused on CDK9­a cancer target whose clinical development has been hampered by compounds with poorly understood target specificity and unacceptable toxicities. We systematically compared phenotypes produced by genetic Cdk9 inhibition to those achieved using a recently developed highly specific small molecule CDK9 inhibitor and found that both perturbations led to robust antitumor responses. Remarkably, nontoxic levels of CDK9 inhibition could achieve significant treatment efficacy, and dose-dependent toxicities produced by prolonged CDK9 suppression were largely reversible upon Cdk9 restoration or drug withdrawal. Overall, these results establish a versatile in vivo target validation platform that can be employed for rapid triaging of therapeutic targets and lend support to efforts aimed at advancing CDK9 inhibitors for cancer therapy.


Asunto(s)
Antineoplásicos , Neoplasias , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Quinasa 9 Dependiente de la Ciclina/metabolismo , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Interferencia de ARN
15.
EMBO Mol Med ; 14(3): e14901, 2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35170849

RESUMEN

Autoinflammatory diseases are a heterogenous group of disorders defined by fever and systemic inflammation suggesting involvement of genes regulating innate immune responses. Patients with homozygous loss-of-function variants in the OTU-deubiquitinase OTULIN suffer from neonatal-onset OTULIN-related autoinflammatory syndrome (ORAS) characterized by fever, panniculitis, diarrhea, and arthritis. Here, we describe an atypical form of ORAS with distinct clinical manifestation of the disease caused by two new compound heterozygous variants (c.258G>A (p.M86I)/c.500G>C (p.W167S)) in the OTULIN gene in a 7-year-old affected by a life-threatening autoinflammatory episode with sterile abscess formation. On the molecular level, we find binding of OTULIN to linear ubiquitin to be compromised by both variants; however, protein stability and catalytic activity is most affected by OTULIN variant p.W167S. These molecular changes together lead to increased levels of linear ubiquitin linkages in patient-derived cells triggering the disease. Our data indicate that the spectrum of ORAS patients is more diverse than previously thought and, thus, supposedly asymptomatic individuals might also be affected. Based on our results, we propose to subdivide the ORAS into classical and atypical entities.


Asunto(s)
Endopeptidasas , Enfermedades Autoinflamatorias Hereditarias/genética , Ubiquitina , Niño , Endopeptidasas/genética , Humanos , Recién Nacido , Inflamación/genética , Ubiquitina/metabolismo
16.
J Exp Med ; 219(1)2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34919140

RESUMEN

Metastasis is the major cause of death in cancer patients. Circulating tumor cells need to migrate through the endothelial layer of blood vessels to escape the hostile circulation and establish metastases at distant organ sites. Here, we identified the membrane-bound metalloprotease ADAM17 on endothelial cells as a key driver of metastasis. We show that TNFR1-dependent tumor cell-induced endothelial cell death, tumor cell extravasation, and subsequent metastatic seeding is dependent on the activity of endothelial ADAM17. Moreover, we reveal that ADAM17-mediated TNFR1 ectodomain shedding and subsequent processing by the γ-secretase complex is required for the induction of TNF-induced necroptosis. Consequently, genetic ablation of ADAM17 in endothelial cells as well as short-term pharmacological inhibition of ADAM17 prevents long-term metastases formation in the lung. Thus, our data identified ADAM17 as a novel essential regulator of necroptosis and as a new promising target for antimetastatic and advanced-stage cancer therapies.


Asunto(s)
Proteína ADAM17/antagonistas & inhibidores , Células Endoteliales/metabolismo , Necroptosis , Neoplasias/etiología , Neoplasias/patología , Animales , Antineoplásicos/farmacología , Biomarcadores , Biomarcadores de Tumor , Comunicación Celular , Muerte Celular , Susceptibilidad a Enfermedades/inmunología , Humanos , Necroptosis/genética , Invasividad Neoplásica , Metástasis de la Neoplasia , Siembra Neoplásica , Neoplasias/metabolismo , Neoplasias/terapia , Proteolisis , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
17.
Cell Death Differ ; 29(3): 492-503, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34535764

RESUMEN

Primary or acquired therapy resistance is a major obstacle to the effective treatment of cancer. Resistance to apoptosis has long been thought to contribute to therapy resistance. We show here that recombinant TRAIL and CDK9 inhibition cooperate in killing cells derived from a broad range of cancers, importantly without inducing detectable adverse events. Remarkably, the combination of TRAIL with CDK9 inhibition was also highly effective on cancers resistant to both, standard-of-care chemotherapy and various targeted therapeutic approaches. Dynamic BH3 profiling revealed that, mechanistically, combining TRAIL with CDK9 inhibition induced a drastic increase in the mitochondrial priming of cancer cells. Intriguingly, this increase occurred irrespective of whether the cancer cells were sensitive or resistant to chemo- or targeted therapy. We conclude that this pro-apoptotic combination therapy has the potential to serve as a highly effective new treatment option for a variety of different cancers. Notably, this includes cancers that are resistant to currently available treatment modalities.


Asunto(s)
Antineoplásicos , Neoplasias , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Línea Celular Tumoral , Mitocondrias , Neoplasias/tratamiento farmacológico , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología
18.
Cell Death Dis ; 12(8): 757, 2021 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-34333527

RESUMEN

TNF-related apoptosis-inducing ligand (TRAIL) receptor 2 (TRAIL-R2) can induce apoptosis in cancer cells upon crosslinking by TRAIL. However, TRAIL-R2 is highly expressed by many cancers suggesting pro-tumor functions. Indeed, TRAIL/TRAIL-R2 also activate pro-inflammatory pathways enhancing tumor cell invasion, migration, and proliferation. In addition, nuclear TRAIL-R2 (nTRAIL-R2) promotes malignancy by inhibiting miRNA let-7-maturation. Here, we show that TRAIL-R2 interacts with the tumor suppressor protein p53 in the nucleus, assigning a novel pro-tumor function to TRAIL-R2. Knockdown of TRAIL-R2 in p53 wild-type cells increases the half-life of p53 and the expression of its target genes, whereas its re-expression decreases p53 protein levels. Interestingly, TRAIL-R2 also interacts with promyelocytic leukemia protein (PML), a major regulator of p53 stability. PML-nuclear bodies are also the main sites of TRAIL-R2/p53 co-localization. Notably, knockdown or destruction of PML abolishes the TRAIL-R2-mediated regulation of p53 levels. In summary, our finding that nTRAIL-R2 facilitates p53 degradation and thereby negatively regulates p53 target gene expression provides insight into an oncogenic role of TRAIL-R2 in tumorigenesis that particularly manifests in p53 wild-type tumors.


Asunto(s)
Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Caspasas/metabolismo , Línea Celular Tumoral , Núcleo Celular/metabolismo , Humanos , Proteína de la Leucemia Promielocítica/metabolismo , Unión Proteica , Estabilidad Proteica , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética , Proteína p53 Supresora de Tumor/genética
19.
Cell Death Differ ; 28(10): 2946-2956, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34381167

RESUMEN

Thymic epithelial cells (TECs) form a unique microenvironment that orchestrates T cell differentiation and immunological tolerance. Despite the importance of TECs for adaptive immunity, there is an incomplete understanding of the signalling networks that support their differentiation and survival. We report that the linear ubiquitin chain assembly complex (LUBAC) is essential for medullary TEC (mTEC) differentiation, cortical TEC survival and prevention of premature thymic atrophy. TEC-specific loss of LUBAC proteins, HOIL-1 or HOIP, severely impaired expansion of the thymic medulla and AIRE-expressing cells. Furthermore, HOIL-1-deficiency caused early thymic atrophy due to Caspase-8/MLKL-dependent apoptosis/necroptosis of cortical TECs. By contrast, deficiency in the LUBAC component, SHARPIN, caused relatively mild defects only in mTECs. These distinct roles for LUBAC components in TECs correlate with their function in linear ubiquitination, NFκB activation and cell survival. Thus, our findings reveal dual roles for LUBAC signaling in TEC differentiation and survival.


Asunto(s)
Timo/citología , Timo/metabolismo , Ubiquitina/metabolismo , Animales , Diferenciación Celular/fisiología , Supervivencia Celular/fisiología , Células Epiteliales/citología , Células Epiteliales/metabolismo , Ratones , Ratones Endogámicos C57BL , Transducción de Señal
20.
Cell Death Discov ; 6: 14, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32194994

RESUMEN

Twenty-one percent of all human cancers bear constitutively activating mutations in the proto-oncogene KRAS. This incidence is substantially higher in some of the most inherently therapy-resistant cancers including 30% of non-small cell lung cancers (NSCLC), 50% of colorectal cancers, and 95% of pancreatic ductal adenocarcinomas (PDAC). Importantly, survival of patients with KRAS-mutated PDAC and NSCLC has not significantly improved since the 1970s highlighting an urgent need to re-examine how oncogenic KRAS influences cell death signaling outputs. Interestingly, cancers expressing oncogenic KRAS manage to escape antitumor immunity via upregulation of programmed cell death 1 ligand 1 (PD-L1). Recently, the development of next-generation KRASG12C-selective inhibitors has shown therapeutic efficacy by triggering antitumor immunity. Yet, clinical trials testing immune checkpoint blockade in KRAS-mutated cancers have yielded disappointing results suggesting other, additional means endow these tumors with the capacity to escape immune recognition. Intriguingly, oncogenic KRAS reprograms regulated cell death pathways triggered by death receptors of the tumor necrosis factor (TNF) receptor superfamily. Perverting the course of their intended function, KRAS-mutated cancers use endogenous TNF-related apoptosis-inducing ligand (TRAIL) and its receptor(s) to promote tumor growth and metastases. Yet, endogenous TRAIL-TRAIL-receptor signaling can be therapeutically targeted and, excitingly, this may not only counteract oncogenic KRAS-driven cancer cell migration, invasion, and metastasis, but also the immunosuppressive reprogramming of the tumor microenvironment it causes. Here, we provide a concise summary of the current literature on oncogenic KRAS-mediated reprogramming of cell death signaling and antitumor immunity with the aim to open novel perspectives on combinatorial treatment strategies involving death receptor targeting.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...