Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Microbiol Resour Announc ; : e0115623, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647329

RESUMEN

The complete genome sequence is reported for Vibrio harveyi isolate K2014767, isolated from a captive Caribbean spiny lobster (Panulirus argus) during a species-specific mortality event in a public display aquarium in the United States.

2.
Appl Environ Microbiol ; 90(5): e0234923, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38597602

RESUMEN

Piscine lactococcosis is a significant threat to cultured and wild fish populations worldwide. The disease typically presents as a per-acute to acute hemorrhagic septicemia causing high morbidity and mortality, recalcitrant to antimicrobial treatment or management interventions. Historically, the disease was attributed to the gram-positive pathogen Lactococcus garvieae. However, recent work has revealed three distinct lactococcosis-causing bacteria (LCB)-L. garvieae, L. petauri, and L. formosensis-which are phenotypically and genetically similar, leading to widespread misidentification. An update on our understanding of lactococcosis and improved methods for identification are urgently needed. To this end, we used representative isolates from each of the three LCB species to compare currently available and recently developed molecular and phenotypic typing assays, including whole-genome sequencing (WGS), end-point and quantitative PCR (qPCR) assays, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), API 20 Strep and Biolog systems, fatty acid methyl ester analysis (FAME), and Sensititre antimicrobial profiling. Apart from WGS, sequencing of the gyrB gene was the only method capable of consistent and accurate identification to the species and strain level. A qPCR assay based on a putative glycosyltransferase gene was also able to distinguish L. petauri from L. garvieae/formosensis. Biochemical tests and MALDI-TOF MS showed some species-specific patterns in sugar and fatty acid metabolism or protein profiles but should be complemented by additional analyses. The LCB demonstrated overlap in host and geographic range, but there were relevant differences in host specificity, regional prevalence, and antimicrobial susceptibility impacting disease treatment and prevention. IMPORTANCE: Lactococcosis affects a broad range of host species, including fish from cold, temperate, and warm freshwater or marine environments, as well as several terrestrial animals, including humans. As such, lactococcosis is a disease of concern for animal and ecosystem health. The disease is endemic in European and Asian aquaculture but is rapidly encroaching on ecologically and economically important fish populations across the Americas. Piscine lactococcosis is difficult to manage, with issues of vaccine escape, ineffective antimicrobial treatment, and the development of carrier fish or biofilms leading to recurrent outbreaks. Our understanding of the disease is also widely outdated. The accepted etiologic agent of lactococcosis is Lactococcus garvieae. However, historical misidentification has masked contributions from two additional species, L. petauri and L. formosensis, which are indistinguishable from L. garvieae by common diagnostic methods. This work is the first comprehensive characterization of all three agents and provides direct recommendations for species-specific diagnosis and management.


Asunto(s)
Enfermedades de los Peces , Infecciones por Bacterias Grampositivas , Lactococcus , Lactococcus/genética , Lactococcus/aislamiento & purificación , Lactococcus/clasificación , Animales , Enfermedades de los Peces/microbiología , Infecciones por Bacterias Grampositivas/microbiología , Infecciones por Bacterias Grampositivas/veterinaria , Peces/microbiología , Secuenciación Completa del Genoma , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
3.
J Fish Dis ; 47(4): e13910, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38153008

RESUMEN

Enteric septicemia of catfish (ESC), caused by the gram-negative enteric bacteria Edwardsiella ictaluri, is a significant threat to catfish aquaculture in the southeastern United States. Antibiotic intervention can reduce mortality; however, antibiotic use results in an imbalance, or dysbiosis, of the gut microbiota, which may increase susceptibility of otherwise healthy fish to enteric infections. Herein, recovery of the intestinal microbiota and survivability of channel catfish in response to ESC challenge was evaluated following a 10-day course of florfenicol and subsequent probiotic or prebiotic supplementation. Following completion of florfenicol therapy, fish were transitioned to a basal diet or diets supplemented with a probiotic or prebiotic for the remainder of the study. Digesta was collected on Days 0, 4, 8 and 12, beginning on the first day after cessation of antibiotic treatment, and gut microbiota was characterized by Illumina sequencing of the 16S rRNA gene (V4 region). Remaining fish were challenged with E. ictaluri and monitored for 32 days post-challenge. Florfenicol administration resulted in dysbiosis characterized by inflated microbial diversity, which began to recover in terms of diversity and composition 4 days after cessation of florfenicol administration. Fish fed the probiotic diet had higher survival in response to ESC challenge than the prebiotic (p = .019) and negative control (p = .029) groups.


Asunto(s)
Bagres , Infecciones por Enterobacteriaceae , Enfermedades de los Peces , Microbioma Gastrointestinal , Ictaluridae , Probióticos , Tianfenicol/análogos & derivados , Animales , Edwardsiella ictaluri/fisiología , Prebióticos , Disbiosis , ARN Ribosómico 16S , Enfermedades de los Peces/tratamiento farmacológico , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/microbiología , Antibacterianos/farmacología , Suplementos Dietéticos , Infecciones por Enterobacteriaceae/tratamiento farmacológico , Infecciones por Enterobacteriaceae/prevención & control , Infecciones por Enterobacteriaceae/veterinaria
4.
G3 (Bethesda) ; 13(9)2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37335943

RESUMEN

Atlantic salmon (Salmo salar) in Northeastern US and Eastern Canada has high economic value for the sport fishing and aquaculture industries. Large differences exist between the genomes of Atlantic salmon of European origin and North American (N.A.) origin. Given the genetic and genomic differences between the 2 lineages, it is crucial to develop unique genomic resources for N.A. Atlantic salmon. Here, we describe the resources that we recently developed for genomic and genetic research in N.A. Atlantic salmon aquaculture. Firstly, a new single nucleotide polymorphism (SNP) database for N.A. Atlantic salmon consisting of 3.1 million putative SNPs was generated using data from whole-genome resequencing of 80 N.A. Atlantic salmon individuals. Secondly, a high-density 50K SNP array enriched for the genic regions of the genome and containing 3 sex determination and 61 putative continent of origin markers was developed and validated. Thirdly, a genetic map composed of 27 linkage groups with 36K SNP markers was generated from 2,512 individuals in 141 full-sib families. Finally, a chromosome-level de novo genome assembly from a male N.A. Atlantic salmon from the St. John River aquaculture strain was generated using PacBio long reads. Information from Hi-C proximity ligation sequences and Bionano optical mapping was used to concatenate the contigs into scaffolds. The assembly contains 1,755 scaffolds and only 1,253 gaps, with a total length of 2.83 Gb and N50 of 17.2 Mb. A BUSCO analysis detected 96.2% of the conserved Actinopterygii genes in the assembly, and the genetic linkage information was used to guide the formation of 27 chromosome sequences. Comparative analysis with the reference genome assembly of the European Atlantic salmon confirmed that the karyotype differences between the 2 lineages are caused by a fission in chromosome Ssa01 and 3 chromosome fusions including the p arm of chromosome Ssa01 with Ssa23, Ssa08 with Ssa29, and Ssa26 with Ssa28. The genomic resources we have generated for Atlantic salmon provide a crucial boost for genetic research and for management of farmed and wild populations in this highly valued species.


Asunto(s)
Salmo salar , Humanos , Animales , Masculino , Salmo salar/genética , Ríos , Polimorfismo de Nucleótido Simple , Cariotipo , Acuicultura , América del Norte
5.
BMC Biol ; 21(1): 67, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37013528

RESUMEN

BACKGROUND: Channel catfish and blue catfish are the most important aquacultured species in the USA. The species do not readily intermate naturally but F1 hybrids can be produced through artificial spawning. F1 hybrids produced by mating channel catfish female with blue catfish male exhibit heterosis and provide an ideal system to study reproductive isolation and hybrid vigor. The purpose of the study was to generate high-quality chromosome level reference genome sequences and to determine their genomic similarities and differences. RESULTS: We present high-quality reference genome sequences for both channel catfish and blue catfish, containing only 67 and 139 total gaps, respectively. We also report three pericentric chromosome inversions between the two genomes, as evidenced by long reads across the inversion junctions from distinct individuals, genetic linkage mapping, and PCR amplicons across the inversion junctions. Recombination rates within the inversional segments, detected as double crossovers, are extremely low among backcross progenies (progenies of channel catfish female × F1 hybrid male), suggesting that the pericentric inversions interrupt postzygotic recombination or survival of recombinants. Identification of channel catfish- and blue catfish-specific genes, along with expansions of immunoglobulin genes and centromeric Xba elements, provides insights into genomic hallmarks of these species. CONCLUSIONS: We generated high-quality reference genome sequences for both blue catfish and channel catfish and identified major chromosomal inversions on chromosomes 6, 11, and 24. These perimetric inversions were validated by additional sequencing analysis, genetic linkage mapping, and PCR analysis across the inversion junctions. The reference genome sequences, as well as the contrasted chromosomal architecture should provide guidance for the interspecific breeding programs.


Asunto(s)
Ictaluridae , Humanos , Animales , Masculino , Femenino , Ictaluridae/genética , Inversión Cromosómica , Ligamiento Genético , Genoma , Mapeo Cromosómico
6.
Front Microbiol ; 14: 1303235, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38361579

RESUMEN

Erysipelothrix spp., including E. rhusiopathiae, are zoonotic bacterial pathogens that can cause morbidity and mortality in mammals, fish, reptiles, birds, and humans. The southern sea otter (SSO; Enhydra lutris nereis) is a federally-listed threatened species for which infectious disease is a major cause of mortality. We estimated the frequency of detection of these opportunistic pathogens in dead SSOs, described pathology associated with Erysipelothrix infections in SSOs, characterized the genetic diversity and antimicrobial susceptibility of SSO isolates, and evaluated the virulence of two novel Erysipelothrix isolates from SSOs using an in vivo fish model. From 1998 to 2021 Erysipelothrix spp. were isolated from six of >500 necropsied SSOs. Erysipelothrix spp. were isolated in pure culture from three cases, while the other three were mixed cultures. Bacterial septicemia was a primary or contributing cause of death in five of the six cases. Other pathology observed included suppurative lymphadenopathy, fibrinosuppurative arteritis with thrombosis and infarction, bilateral uveitis and endophthalmitis, hypopyon, petechia and ecchymoses, mucosal infarction, and suppurative meningoencephalitis and ventriculitis. Short to long slender Gram-positive or Gram-variable bacterial rods were identified within lesions, alone or with other opportunistic bacteria. All six SSO isolates had the spaA genotype-four isolates clustered with spaA E. rhusiopathiae strains from various terrestrial and marine animal hosts. Two isolates did not cluster with any known Erysipelothrix spp.; whole genome sequencing revealed a novel Erysipelothrix species and a novel E. rhusiopathiae subspecies. We propose the names Erysipelothrix enhydrae sp. nov. and Erysipelothrix rhusiopathiae ohloneorum ssp. nov. respectively. The type strains are E. enhydrae UCD-4322-04 and E. rhusiopathiae ohloneorum UCD-4724-06, respectively. Experimental injection of tiger barbs (Puntigrus tetrazona) resulted in infection and mortality from the two novel Erysipelothrix spp. Antimicrobial susceptibility testing of Erysipelothrix isolates from SSOs shows similar susceptibility profiles to isolates from other terrestrial and aquatic animals. This is the first description of the pathology, microbial characteristics, and genetic diversity of Erysipelothrix isolates recovered from diseased SSOs. Methods presented here can facilitate case recognition, aid characterization of Erysipelothrix isolates, and illustrate assessment of virulence using fish models.

7.
Animals (Basel) ; 12(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36496751

RESUMEN

The lake sturgeon (Acipenser fulvescens; LST) is the only native sturgeon species in the Great Lakes (GL), but due to multiple factors, their current populations are estimated to be <1% of historical abundances. Little is known about infectious diseases affecting GL-LST in hatchery and wild settings. Therefore, a two-year disease surveillance study was undertaken, resulting in the detection and first in vitro isolation of a herpesvirus from grossly apparent cutaneous lesions in wild adult LST inhabiting two GL watersheds (Erie and Huron). Histological and ultrastructural examination of lesions revealed proliferative epidermitis associated with herpesvirus-like virions. A virus with identical ultrastructural characteristics was recovered from cells inoculated with lesion tissues. Partial DNA polymerase gene sequencing placed the virus within the Family Alloherpesviridae, with high similarity to a lake sturgeon herpesvirus (LSHV) from Wisconsin, USA. Genomic comparisons revealed ~84% Average Nucleotide Identity between the two isolates, leading to the proposed classification of LSHV-1 (Wisconsin) and LSHV-2 (Michigan) for the two viruses. When naïve juvenile LST were immersion-exposed to LSHV-2, severe disease and ~33% mortality occurred, with virus re-isolated from representative skin lesions, fulfilling Rivers' postulates. Results collectively show LSHV-2 is associated with epithelial changes in wild adult LST, disease and mortality in juvenile LST, and is a potential threat to GL-LST conservation.

8.
J Parasitol ; 108(2): 132-140, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35312005

RESUMEN

An abundance of morphologically variable Henneguya species complicates the understanding of disease relationships between ictalurid catfish and myxozoan (Phylum: Cnidaria) parasites on North American aquaculture operations. Henneguya ictaluri, the cause of proliferative gill disease (PGD) in channel and hybrid catfish, is arguably the most important parasite of commercial catfish aquaculture in the southeastern United States. While research indicates arrested development and limited sporogenesis of H. ictaluri in channel (Ictalurus punctatus) × blue (Ictalurus furcatus) hybrid catfish, incidents of PGD persist in hybrid production systems. This work investigated the influence of fish host on myxozoan community composition and diversity within naturally infected gill tissues from diagnostic case submissions to the Aquatic Research and Diagnostic Laboratory in Stoneville, Mississippi, from 2017 to 2019. Gills collected from farm-raised catfish with clinical PGD were subjected to metagenomic amplicon sequencing of the myxozoan 18S SSU rDNA gene diagnostic variable region 3 (DVR3). Myxozoan community composition significantly differed between channel and hybrid catfish PGD cases, with channel catfish having more diverse community structures. Channel catfish gills had a greater relative abundance of H. ictaluri in 2017 and 2019, while no differences were observed in 2018. Importantly, H. ictaluri was present in all channel and hybrid catfish PGD cases across all years; however, H. ictaluri was not the most abundant myxozoan in almost half the cases examined, suggesting other myxozoan species may also contribute to PGD pathology. The detection of numerous known and unclassified myxozoan sequences in addition to H. ictaluri provides evidence PGD may involve mixed species infections. Furthermore, the presence of numerous unclassified myxozoan sequences in gill samples from clinical PGD cases indicates the number of described species from U.S. farm-raised catfish vastly underestimates the true myxozoan diversity present within the varied pond microcosms associated with catfish aquaculture.


Asunto(s)
Bagres , Enfermedades de los Peces , Ictaluridae , Myxozoa , Parásitos , Enfermedades Parasitarias en Animales , Animales , Acuicultura , Enfermedades de los Peces/parasitología , Branquias/parasitología , Ictaluridae/parasitología , Mississippi/epidemiología , Myxozoa/genética , Enfermedades Parasitarias en Animales/parasitología
9.
Syst Appl Microbiol ; 45(2): 126293, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35026686

RESUMEN

Flavobacterium columnare is the causative agent of columnaris disease in freshwater fish and four discrete genetic groups exist within the species, suggesting that the species designation requires revision. The present study determined the taxonomic status of the four genetic groups of F. columnare using polyphasic and phylogenomic approaches and included five representative isolates from each genetic group (including type strain ATCC 23463T; genetic group 1). 16S rRNA gene sequence analysis revealed genetic group 2 isolate AL-02-36T, genetic group 3 isolate 90-106T, and genetic group 4 isolate Costa Rica 04-02-TNT shared less than <98.8 % sequence identity to F. columnare ATCC 23463T. Phylogenetic analyses of 16S rRNA and gyrB genes using different methodologies demonstrated the four genetic groups formed well-supported and distinct clades within the genus Flavobacterium. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (GGDC) values between F. columnare ATCC 23463T, genetic group 2 isolate AL-02-36T, genetic group 3 isolate 90-106T, and genetic group 4 isolate Costa Rica 04-02-TNT were less than 90.84% and 42.7%, respectively. Biochemical and physiological characteristics were similar among the four genetic groups; however, quantitative differences in fatty acid profiles were detected and MALDI-TOF analyses demonstrated numerous distinguishing peaks unique to each genetic group. Chemotaxonomic, MALDI-TOF characterization and ANI/GGDC calculations afforded differentiation between the genetic groups, indicating each group is a discrete species. Herein, the names F. covae sp. nov. (AL-02-36T), F. davisii sp. nov. (90-106T), and F. oreochromis sp. nov. (Costa Rica 04-02-TNT) are proposed to represent genetic groups 2, 3, and 4, respectively.


Asunto(s)
Ácidos Grasos , Flavobacterium , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/análisis , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
10.
J Fish Dis ; 44(11): 1725-1751, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34251059

RESUMEN

The bacterium Edwardsiella piscicida causes significant losses in global aquaculture, particularly channel (Ictalurus punctatus) × blue (I. furcatus) hybrid catfish cultured in the south-eastern United States. Emergence of E. piscicida in hybrid catfish is worrisome given current industry trends towards increased hybrid production. The project objectives were to assess intraspecific genetic variability of E. piscicida isolates recovered from diseased channel and hybrid catfish in Mississippi; and determine virulence associations among genetic variants. Repetitive extragenic palindromic sequence-based PCR (rep-PCR) using ERIC I and II primers was used to screen 158 E. piscicida diagnostic case isolates. A subsample of 39 E. piscicida isolates, representing predominant rep-PCR profiles, was further characterized using BOX and (GTG)5 rep-PCR primers, virulence gene assessment and multilocus sequence analysis (MLSA) targeting housekeeping genes gyrb, pgi and phoU. The MLSA provided greater resolution than rep-PCR, revealing 5 discrete phylogroups that correlated similarly with virulence gene profiles. Virulence assessments using E. piscicida representatives from each MLSA group resulted in 14-day cumulative mortality ranging from 22% to 54% and 63 to 72% in channel and hybrid fingerlings, respectively. Across all phylogroups, mortality was higher in hybrid catfish (p < .05), supporting previous work indicating E. piscicida is an emerging threat to hybrid catfish aquaculture in the south-eastern United States.


Asunto(s)
Bagres/microbiología , Edwardsiella/genética , Infecciones por Enterobacteriaceae/veterinaria , Enfermedades de los Peces/microbiología , Animales , Acuicultura , Técnicas de Tipificación Bacteriana , Edwardsiella/patogenicidad , Pruebas de Sensibilidad Microbiana , Mississippi , Tipificación de Secuencias Multilocus , Filogenia , Virulencia
11.
Microbiol Resour Announc ; 10(18)2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-33958406

RESUMEN

In 2015 and 2016, a previously unrecognized Francisella sp. was isolated from disease outbreaks in maricultured spotted rose snapper (Lutjanus guttatus) on the Pacific coast of Central America. Polyphasic analysis demonstrated these bacteria differed from any known Francisella spp. Here, the complete genomes from the recently described Francisella marina strains are released.

12.
G3 (Bethesda) ; 11(4)2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33616628

RESUMEN

Currently, there is still a need to improve the contiguity of the rainbow trout reference genome and to use multiple genetic backgrounds that will represent the genetic diversity of this species. The Arlee doubled haploid line was originated from a domesticated hatchery strain that was originally collected from the northern California coast. The Canu pipeline was used to generate the Arlee line genome de-novo assembly from high coverage PacBio long-reads sequence data. The assembly was further improved with Bionano optical maps and Hi-C proximity ligation sequence data to generate 32 major scaffolds corresponding to the karyotype of the Arlee line (2 N = 64). It is composed of 938 scaffolds with N50 of 39.16 Mb and a total length of 2.33 Gb, of which ∼95% was in 32 chromosome sequences with only 438 gaps between contigs and scaffolds. In rainbow trout the haploid chromosome number can vary from 29 to 32. In the Arlee karyotype the haploid chromosome number is 32 because chromosomes Omy04, 14 and 25 are divided into six acrocentric chromosomes. Additional structural variations that were identified in the Arlee genome included the major inversions on chromosomes Omy05 and Omy20 and additional 15 smaller inversions that will require further validation. This is also the first rainbow trout genome assembly that includes a scaffold with the sex-determination gene (sdY) in the chromosome Y sequence. The utility of this genome assembly is shown through the improved annotation of the duplicated genome loci that harbor the IGH genes on chromosomes Omy12 and Omy13.


Asunto(s)
Oncorhynchus mykiss , Animales , Genoma , Oncorhynchus mykiss/genética , Procesos de Determinación del Sexo , Cromosoma Y
13.
Int J Syst Evol Microbiol ; 70(2): 857-867, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31682217

RESUMEN

A recently described emergent disease of ornamental fish has been associated with an Erysipelothrix species positive for the surface protective antigen (spa) C gene. Whole genome sequencing was performed on five spaC Erysipelothrix isolates from diseased ornamental fish. In addition, these spaC Erysipelothrix isolates were compared to spaA-, spaB- and other spaC-positive Erysipelothrix species isolated from terrestrial and marine mammals, birds and fish using multi-locus sequence analysis (MLSA). The genomes of fish pathogenic spaC isolates were genetically distinct from Erysipelothrix rhusiopathiae, sharing 86.61-86.94 % average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values of 31.6-32.2 %, but 99.01-99.11 % ANI and 90.8-91.9 % dDDH values with the uncharacterized spaC-positive Erysipelothrix sp. strain 2 isolated from swine. The findings indicate the spaC-positive fish and swine isolates are conspecific and represent a previously unrecognized taxon. While phylogenies inferred from MLSA sequences confirm this conclusion, slight genetic differences between the spaC fish isolates and swine strain 2 were indicated. Bath immersion challenge trials were conducted using tiger barbs (Puntigrus tetrazona) exposed by immersion to 107 c.f.u. ml-1 of three fish pathogenic spaC Erysipelothrix species, and three spaA and two spaB E. rhusiopathiae isolates as a model of infection. Thirty days post-challenge, cumulative mean percentage survival was 37 % for the spaA, 100 % for the spaB and 13 % for the spaC isolates, revealing differences in virulence among the various spa genotypes in fish. Genetic findings and observed differences in virulence demonstrate the fish pathogenic spaC isolates represent a novel species, for which the name Erysipelothrix piscisicarius sp. nov. is proposed. The type strain is E. piscisicarius 15TAL0474T (=NRRL B-65533T=ATCC-TSD-175T=DSM 110099T).


Asunto(s)
Cyprinidae/microbiología , Infecciones por Erysipelothrix/patología , Erysipelothrix/clasificación , Filogenia , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Erysipelothrix/aislamiento & purificación , Erysipelothrix/patogenicidad , Ácidos Grasos/química , Tipificación de Secuencias Multilocus , Hibridación de Ácido Nucleico , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Porcinos , Virulencia
14.
Fish Shellfish Immunol ; 84: 1134-1144, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30414491

RESUMEN

IgM transcripts from different mucosal and systemic tissues from a single adult channel catfish have been evaluated. Arrayed heavy chain cDNA libraries from each of these different mucosal and systemic tissues were separately constructed, hybridized with VH family specific probes and a variety of approaches were used to define their structural relationships. Baseline hybridization studies indicated that the tissue libraries had different VH expression patterns, and sequencing studies indicated this was not simply due to varying proportions of the same B cell population. In the systemic tissues of PBL, spleen, and anterior kidney >95% of the sequenced clones in the arrayed libraries represented different heavy chain rearrangements. Diversity was also found in the mucosal libraries of skin, gill lamellae, and two non-adjoining regions of the intestine, but additional populations were identified which indicated localized clonal expansion. Various clonal sets were characterized in detail, and their genealogies indicated somatic mutation accompanied localized clonal expansion with some members undergoing additional mutations and expansion after migration to different mucosal sites. PCR analyses indicated these mucosal clonal sets were more abundant within different mucosal tissues rather than in the systemic tissues. These studies indicate that the mucosal immune system in fish can express B cell transcripts differently from those found systemically. These studies further indicate that the mucosal immune system is interconnected with clonal B cells migrating between different mucosal tissues, results which yield new insight into immune diversity in early vertebrate phylogeny.


Asunto(s)
Linfocitos B/fisiología , Movimiento Celular , Proliferación Celular , Ictaluridae/inmunología , Inmunidad Mucosa/fisiología , Membrana Mucosa/metabolismo , Animales
15.
Front Microbiol ; 9: 1073, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29875764

RESUMEN

The microbiota of teleost fish has gained a great deal of research attention within the past decade, with experiments suggesting that both host-genetics and environment are strong ecological forces shaping the bacterial assemblages of fish microbiomes. Despite representing great commercial and scientific importance, the catfish within the family Ictaluridae, specifically the blue and channel catfish, have received very little research attention directed toward their gut-associated microbiota using 16S rRNA gene sequencing. Within this study we utilize multiple genetically distinct strains of blue and channel catfish, verified via microsatellite genotyping, to further quantify the role of host-genetics in shaping the bacterial communities in the fish gut, while maintaining environmental and husbandry parameters constant. Comparisons of the gut microbiota among the two catfish species showed no differences in bacterial species richness (observed and Chao1) or overall composition (weighted and unweighted UniFrac) and UniFrac distances showed no correlation with host genetic distances (Rst) according to Mantel tests. The microbiota of environmental samples (diet and water) were found to be significantly more diverse than that of the catfish gut associated samples, suggesting that factors within the host were further regulating the bacterial communities, despite the lack of a clear connection between microbiota composition and host genotype. The catfish gut communities were dominated by the phyla Fusobacteria, Proteobacteria, and Firmicutes; however, differential abundance analysis between the two catfish species using analysis of composition of microbiomes detected two differential genera, Cetobacterium and Clostridium XI. The metagenomic pathway features inferred from our dataset suggests the catfish gut bacterial communities possess pathways beneficial to their host such as those involved in nutrient metabolism and antimicrobial biosynthesis, while also containing pathways involved in virulence factors of pathogens. Testing of the inferred KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways by DESeq2 revealed minor difference in microbiota function, with only two metagenomic pathways detected as differentially abundant between the two catfish species. As the first study to characterize the gut microbiota of blue catfish, our study results have direct implications on future ictalurid catfish research. Additionally, our insight into the intrinsic factors driving microbiota structure has basic implications for the future study of fish gut microbiota.

16.
Genome Announc ; 6(24)2018 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-29903823

RESUMEN

Aeromonas bestiarum is a Gram-negative mesophilic motile bacterium causing acute hemorrhagic septicemia or chronic skin ulcers in fish. Here, we report the draft genome sequence of A. bestiarum strain GA97-22, which was isolated from rainbow trout in 1997. This genome sequence will improve our understanding of the complex taxonomy of motile aeromonads.

17.
Front Microbiol ; 9: 452, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29593693

RESUMEN

Columnaris disease, caused by the Gram-negative bacterium Flavobacterium columnare, is one of the most prevalent fish diseases worldwide. An exceptionally high level of genetic diversity among isolates of F. columnare has long been recognized, whereby six established genomovars have been described to date. However, little has been done to quantify or characterize this diversity further in a systematic fashion. The objective of this research was to perform phylogenetic analyses of 16S rRNA and housekeeping gene sequences to decipher the genetic diversity of F. columnare. Fifty isolates and/or genomes of F. columnare, originating from diverse years, geographic locations, fish hosts, and representative of the six genomovars were analyzed in this study. A multilocus phylogenetic analysis (MLPA) of the 16S rRNA and six housekeeping genes supported four distinct F. columnare genetic groups. There were associations between genomovar and genetic group, but these relationships were imperfect indicating that genomovar assignment does not accurately reflect F. columnare genetic diversity. To expand the dataset, an additional 90 16S rRNA gene sequences were retrieved from GenBank and a phylogenetic analysis of this larger dataset also supported the establishment of four genetic groups. Examination of isolate historical data indicated biological relevance to the identified genetic diversity, with some genetic groups isolated preferentially from specific fish species or families. It is proposed that F. columnare isolates be assigned to the four genetic groups defined in this study rather than genomovar in order to facilitate a standard nomenclature across the scientific community. An increased understanding of which genetic groups are most prevalent in different regions and/or aquaculture industries may allow for the development of improved targeted control and treatment measures for columnaris disease.

18.
J Clin Microbiol ; 55(12): 3466-3491, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28978684

RESUMEN

Edwardsiella spp. are responsible for significant losses in important wild and cultured fish species worldwide. Recent phylogenomic investigations have determined that bacteria historically classified as Edwardsiella tarda actually represent three genetically distinct yet phenotypically ambiguous taxa with various degrees of pathogenicity in different hosts. Previous recognition of these taxa was hampered by the lack of a distinguishing phenotypic character. Commercial test panel configurations are relatively constant over time, and as new species are defined, appropriate discriminatory tests may not be present in current test panel arrangements. While phenobiochemical tests fail to discriminate between these taxa, data presented here revealed discriminatory peaks for each Edwardsiella species using matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) methodology, suggesting that MALDI-TOF can offer rapid, reliable identification in line with current systematic classifications. Furthermore, a multiplex PCR assay was validated for rapid molecular differentiation of the Edwardsiella spp. affecting fish. Moreover, the limitations of relying on partial 16S rRNA for discrimination of Edwardsiella spp. and advantages of employing alternative single-copy genes gyrB and sodB for molecular identification and classification of Edwardsiella were demonstrated. Last, sodB sequencing confirmed that isolates previously defined as typical motile fish-pathogenic E. tarda are synonymous with Edwardsiella piscicida, while atypical nonmotile fish-pathogenic E. tarda isolates are equivalent to Edwardsiella anguillarum Fish-nonpathogenic E. tarda isolates are consistent with E. tarda as it is currently defined. These analyses help deconvolute the scientific literature regarding these organisms and provide baseline information to better facilitate proper taxonomic assignment and minimize erroneous identifications of Edwardsiella isolates in clinical and research settings.


Asunto(s)
Edwardsiella tarda/clasificación , Edwardsiella tarda/aislamiento & purificación , Infecciones por Enterobacteriaceae/veterinaria , Enfermedades de los Peces/microbiología , Genotipo , Fenotipo , Animales , Proteínas Bacterianas/genética , Girasa de ADN/genética , Edwardsiella tarda/química , Edwardsiella tarda/genética , Infecciones por Enterobacteriaceae/diagnóstico , Infecciones por Enterobacteriaceae/microbiología , Enfermedades de los Peces/diagnóstico , Reacción en Cadena de la Polimerasa Multiplex/métodos , Filogeografía , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Superóxido Dismutasa/genética
19.
Front Microbiol ; 8: 1375, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28790987

RESUMEN

Columnaris disease caused by Gram-negative rod Flavobacterium columnare is one of the most common diseases of catfish. F. columnare is also a common problem in other cultured fish species worldwide. F. columnare has three major genomovars; we have sequenced a representative strain from genomovar I (ATCC 49512, which is avirulent in catfish) and genomovar II (94-081, which is highly pathogenic in catfish). Here, we present a comparative analysis of the two genomes. Interestingly, F. columnare ATCC 49512 and 94-081 meet criteria to be considered different species based on the Average Nucleotide Identity (90.71% similar) and DNA-DNA Hybridization (42.6% similar). Genome alignment indicated the two genomes have a large number of rearrangements. However, function-based comparative genomics analysis indicated that the two strains have similar functional capabilities with 2,263 conserved orthologous clusters; strain ATCC 49512 has 290 unique orthologous clusters while strain 94-081 has 391. Both strains carry type I secretion system, type VI secretion system, and type IX secretion system. The two genomes also have similar CRISPR capacities. The F. columnare strain ATCC 49512 genome contains a higher number of insertion sequence families and phage regions, while the F. columnare strain 94-081 genome has more genomic islands and more regulatory gene capacity. Transposon mutagenesis using Tn4351 in pathogenic strain 94-081 yielded six mutants, and experimental infections of fish showed hemolysin and glycine cleavage protein mutants had 15 and 10% mortalities, respectively, while the wild-type strain caused 100% mortalities. Our comparative and mutational analysis yielded important information on classification of genomovars I and II F. columnare as well as potential virulence genes in F. columnare strain 94-081.

20.
Genome Announc ; 5(24)2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28619788

RESUMEN

Edwardsiella ictaluri is a Gram-negative bacillus that has recently been implicated in disease outbreaks in tilapia and zebrafish. We report here the complete and annotated genome sequence of an isolate from a Nile tilapia (Oreochromis niloticus), which contains a chromosome of 3,630,639 bp and two plasmids.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA