Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 12(11): e9462, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36415877

RESUMEN

Formerly common plant species are expected to be particularly susceptible to recent habitat fragmentation. We studied the population genetics of 19 recently fragmented Saxifraga granulata populations (max. distance 61 km) in Luxembourg and neighboring Germany using RAPD markers and a common garden experiment. We assessed (1) the relationships between plant fitness, quantitative genetic variation, molecular genetic variation, and population size; and (2) the relative importance of genetic drift and selection in shaping genetic variation. Molecular genetic diversity was high but did not correlate with population size, habitat conditions, or plant performance. Genetic differentiation was low (F ST = 0.079 ± 0.135), and there was no isolation by distance. Longevity, clonality, and the long-lived seed bank of S. granulata may have prevented strong genetic erosion and genetic differentiation among populations. However, genetic distinctness increased with decreasing genetic diversity indicating that random genetic drift occurred in the studied populations. Quantitative and molecular genetic variations were correlated, and their differentiation (Q ST vs. F ST) among S. granulata populations was similar, suggesting that mainly random processes have shaped the quantitative genetic differentiation among populations. However, pairwise quantitative genetic distances increased with geographic and climatic distances, even when adjusted for molecular genetic distances, indicating diversifying selection. Our results indicate that long-lived clonal species may be buffered at least temporarily against the negative effects of fragmentation. The relationship between quantitative genetic and geographic distance may be a more sensitive indicator of selection than Q ST-F ST differences.

2.
Ann Bot ; 115(7): 1177-90, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25862244

RESUMEN

BACKGROUND AND AIMS: The effects of habitat fragmentation on quantitative genetic variation in plant populations are still poorly known. Saxifraga sponhemica is a rare endemic of Central Europe with a disjunct distribution, and a stable and specialized habitat of treeless screes and cliffs. This study therefore used S. sponhemica as a model species to compare quantitative and molecular variation in order to explore (1) the relative importance of drift and selection in shaping the distribution of quantitative genetic variation along climatic gradients; (2) the relationship between plant fitness, quantitative genetic variation, molecular genetic variation and population size; and (3) the relationship between the differentiation of a trait among populations and its evolvability. METHODS: Genetic variation within and among 22 populations from the whole distribution area of S. sponhemica was studied using RAPD (random amplified polymorphic DNA) markers, and climatic variables were obtained for each site. Seeds were collected from each population and germinated, and seedlings were transplanted into a common garden for determination of variation in plant traits. KEY RESULTS: In contrast to previous results from rare plant species, strong evidence was found for divergent selection. Most population trait means of S. sponhemica were significantly related to climate gradients, indicating adaptation. Quantitative genetic differentiation increased with geographical distance, even when neutral molecular divergence was controlled for, and QST exceeded FST for some traits. The evolvability of traits was negatively correlated with the degree of differentiation among populations (QST), i.e. traits under strong selection showed little genetic variation within populations. The evolutionary potential of a population was not related to its size, the performance of the population or its neutral genetic diversity. However, performance in the common garden was lower for plants from populations with reduced molecular genetic variation, suggesting inbreeding depression due to genetic erosion. CONCLUSIONS: The findings suggest that studies of molecular and quantitative genetic variation may provide complementary insights important for the conservation of rare species. The strong differentiation of quantitative traits among populations shows that selection can be an important force for structuring variation in evolutionarily important traits even for rare endemic species restricted to very specific habitats.


Asunto(s)
Ecosistema , Variación Genética , Saxifragaceae/genética , Selección Genética , Clima , Europa (Continente) , Densidad de Población , Carácter Cuantitativo Heredable , Técnica del ADN Polimorfo Amplificado Aleatorio
3.
Am J Bot ; 99(8): 1300-13, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22859653

RESUMEN

PREMISE OF THE STUDY: Inbreeding depression is a major evolutionary force and an important topic in conservation genetics because habitat fragmentation leads to increased inbreeding in the populations of many species. Crosses between populations may restore heterozygosity, resulting in increased performance (heterosis), but may also lead to the disruption of coadapted gene complexes and to decreased performance (outbreeding depression). METHODS: We investigated the effects of selfing and of within and between population crosses on reproduction and the performance of two generations of offspring of the declining grassland plant Saxifraga granulata (Saxifragaceae). We also subjected the first generation of offspring to a fertilization and two stress treatments (competition and defoliation) to investigate whether the effects of inbreeding and interpopulation gene flow depend on environmental conditions. KEY RESULTS: Inbreeding depression affected all traits in the F(1) generation (δ = 0.07-0.55), but was stronger for traits expressed late during development and varied among families. The adaptive plasticity of offspring from selfing and from interpopulation crosses in response to nutrient addition was reduced. Outbreeding depression was also observed in response to stress. Multiplicative fitness of the F(2) generation after serial inbreeding was extremely low (δ > 0.99), but there was heterosis after crossing inbred lines. Outbreeding depression was not observed in the F(2). CONCLUSIONS: Continuous inbreeding may drastically reduce the fitness of plants, but effects may be environment-dependent. When assessing the genetic effects of fragmentation and interpopulation crosses, the possible effects on the mean performance of offspring and on its adaptive plasticity should be considered.


Asunto(s)
Adaptación Fisiológica , Variación Genética , Endogamia , Saxifragaceae/genética , Conservación de los Recursos Naturales , Cruzamientos Genéticos , Ambiente , Flores/genética , Flores/fisiología , Flujo Génico , Genética de Población , Heterocigoto , Vigor Híbrido , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Polen/genética , Polen/fisiología , Polinización , Reproducción , Aislamiento Reproductivo , Saxifragaceae/fisiología , Semillas/genética , Semillas/fisiología , Estrés Fisiológico , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...