Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plant Dis ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38885023

RESUMEN

Dollar spot is a major fungal disease affecting turfgrass worldwide and can quickly destroy turfgrass swards. An assimilating probe-based loop-mediated amplification (LAMP) assay was developed to detect Clarireedia monteithiana and C. jacksonii, the causal agents of dollar spot within the continental US. Five LAMP primers were designed to target the calmodulin gene with the addition of a 6-carboxyl-fluorescein florescent assimilating probe and the temperature amplification was optimized for C. jacksonii and C. monteithiana identification. The minimum amount purified DNA needed for detection was 0.05 ng µL-1. Specificity assays against host DNA and other turfgrass pathogens were negative. Successful LAMP amplification was also observed for dollar spot infected turfgrass field samples. Further, a DNA extraction technique via rapid heat-chill cycles and visualization of LAMP results via a florescent flashlight was developed and adapted for fast, simple and reliable detection in 1.25 hours. This assimilating probe-based LAMP assay has proved successful as a rapid, sensitive, and specific detection of C. monteithiana and C. jacksonii in pure cultures and from symptomatic turfgrass leaves blades. The assay represents a promising technology to be used in the field for on-site, point-of-care pathogen detection.

2.
G3 (Bethesda) ; 13(8)2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37259608

RESUMEN

Apples grown in high heat, high light, and low humidity environments are at risk for sun injury disorders like sunburn and associated crop losses. Understanding the physiological and molecular mechanisms underlying sunburn will support improvement of mitigation strategies and breeding for more resilient varieties. Numerous studies have highlighted key biochemical processes involved in sun injury, such as the phenylpropanoid and reactive oxygen species (ROS) pathways, demonstrating both enzyme activities and expression of related genes in response to sunburn conditions. Most previous studies have focused on at-harvest activity of a small number of genes in response to heat stress. Thus, it remains unclear how stress events earlier in the season affect physiology and gene expression. Here, we applied heat stress to mid-season apples in the field and collected tissue along a time course-24, 48, and 72 h following a heat stimulus-to investigate dynamic gene expression changes using a transcriptomic lens. We found a relatively small number of differentially expressed genes (DEGs) and enriched functional terms in response to heat treatments. Only a few of these belonged to pathways previously described to be involved in sunburn, such as the AsA-GSH pathway, while most DEGs had not yet been implicated in sunburn or heat stress in pome fruit.


Asunto(s)
Malus , Quemadura Solar , Malus/genética , Frutas , Transcriptoma , Quemadura Solar/genética , Quemadura Solar/metabolismo , Estaciones del Año , Fitomejoramiento , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas
3.
Plant Dis ; 107(11): 3394-3402, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37018213

RESUMEN

Phytopythium vexans (de Bary) Abad, de Cock, Bala, Robideau, A. M. Lodhi & Levesque is an important waterborne and soil-inhabiting oomycete pathogen causing root and crown rot of various plants including certain woody ornamentals, fruit, and forest trees. Early and accurate detection of Phytopythium in the nursery production system is critical, as this pathogen is quickly transported to neighboring healthy plants through the irrigation system. Conventional methods for the detection of this pathogen are tedious, frequently inconclusive, and costly. Hence, a specific, sensitive, and rapid molecular diagnostic method is required to overcome the limitations of traditional identification. In the current study, loop-mediated isothermal amplification (LAMP) for DNA amplification was developed for the identification of P. vexans. It was evaluated using real-time and colorimetric assays. Several sets of LAMP primers were designed and screened, but PVLSU2 was found to be specific to P. vexans as it did not amplify other closely related oomycetes, fungi, and bacteria. Moreover, the developed assays were sensitive enough to amplify DNA up to 102 fg per reaction. The real-time LAMP assay was more sensitive than traditional PCR and culture-based methods to detect infected plant samples. In addition, both LAMP assays detected as few as 100 zoospores suspended in 100 ml water. These LAMP assays are anticipated to save time in P. vexans detection by disease diagnostic laboratories and research institutions and enable early preparedness in the event of disease outbreaks.


Asunto(s)
Técnicas de Amplificación de Ácido Nucleico , Oomicetos , Técnicas de Amplificación de Ácido Nucleico/métodos , Reacción en Cadena de la Polimerasa/métodos , ADN
4.
Curr Issues Mol Biol ; 44(2): 670-685, 2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35723332

RESUMEN

Multiple demethylation-inhibiting (DMI) fungicides are used to control pecan scab, caused by Venturia effusa. To compare the efficacy of various DMI fungicides on V. effusa, field trials were conducted at multiple locations applying fungicides to individual pecan terminals. In vitro assays were conducted to test the sensitivity of V. effusa isolates from multiple locations to various concentrations of tebuconazole. Both studies confirmed high levels of resistance to tebuconazole. To investigate the mechanism of resistance, two copies of the CYP51 gene, CYP51A and CYP51B, of resistant and sensitive isolates were sequenced and scanned for mutations. In the CYP51A gene, mutation at codon 444 (G444D), and in the CYP51B gene, mutations at codon 357 (G357H) and 177 (I77T/I77L) were found in resistant isolates. Expression analysis of CYP51A and CYP51B revealed enhanced expression in the resistant isolates compared to the sensitive isolates. There were 3.0- and 1.9-fold increases in gene expression in the resistant isolates compared to the sensitive isolates for the CYP51A and CYP51B genes, respectively. Therefore, two potential mechanisms-multiple point mutations and gene over expression in the CYP51 gene of V. effusa isolates-were revealed as likely reasons for the observed resistance in isolates of V. effusa to tebuconazole.

5.
Plant Dis ; 2022 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-35306846

RESUMEN

US banana producers are looking for the organic banana market in the southeastern US including Florida and the coastal region of Georgia (Schupska, 2008). In December of 2020, a 6-hand bunched banana (cv. Pisang Awak, belongs to tetraploid AABB genome) with nearly 50% infection (with 15-20% disease severity, <1% of the total harvest) was received from the UGA Banana Research Plot, Tifton, GA with typical stem end rot symptoms of softened and water-soaked flesh. To identify the pathogen, the infected tissues were separated with a sterilized blade, surface disinfested with 10% bleach solution for 1 min, and subsequently washed in three changes of sterile distilled water. The sterilized tissues were aseptically placed on potato dextrose agar (PDA) medium and incubated at 25°C in the dark for 5-10 days. Two isolates of the pathogen with similar colony morphology were obtained and initially identified morphologically using a Botryosphaeriaceae taxonomic key (Phillips et al., 2013). The first growth phase for the isolates documented on PDA, gave rise to white colonies, followed by a dense, black mycelium. The mycelium was fast-spreading, immersed, branched, and septate. The shiny black pycnidia were viewed on the PDA surface after 8-10 days of incubation. Initially, the morphological features of the isolates were identified as Lasiodiplodia spp. (Phillips et al., 2013). To identify to species level, genomic DNA was extracted from two isolates (SW1 & SW2) and amplified by PCR for sequencing using ITS1/ITS4 (White et al., 1990), EF1- 688F/ EF1- 1251R (Alves et al., 2008), Bt2a/Bt2b (Glass & Donaldson, 1995) and rpb2-LasF/ rpb2-LasR (Cruywagen et al., 2017). The ITS (MZ293097 and MZ293114), EF1(OL657173 and OL657174) and rpb2 (OL704860 and OL704861) sequences showed 100% identity and Bt (OL657175 and OL657176) sequences showed 99.5% and 99.7% identity to the corresponding sequences of Lasiodiplodia brasiliensis type strain CMW35884 in GenBank (ITS: KU887094, EF1: KU886972, Bt: KU887466 and rpb2: KU696345). To further affirm the identity, a concatenated phylogenetic analysis was executed with ITS, EF1, Bt, and rpb2 sequences of both isolates and 31 reference strains using Geneious Prime 2019.2.3 Tamura-Nei Neighbor-joining method with 1,000 bootstrap replications, and the outcome was consistent with the conclusion above. To fulfill Koch's postulates, a pathogenicity test was performed with bunched bananas. Two whole bunched bananas surface sterilized with 10% bleach solutions and subsequent washing with sterilized water were cut into 3 bananas per brunch. The inoculum was prepared with 105 spores/ml. The conidial suspension was inoculated on the on-cut surface of the banana crown (300 µl per crown) using a micropipette. Sterile distilled water was applied as a control. The fruit was then packed and sealed in plastic bags and incubated at 25°C. Stem end rot symptoms were first appeared at 5 dpi and increased 7 days later. Two weeks post-inoculation, typical blackened and softened rot tissues were observed, and control fruits remained asymptomatic. To the best of our knowledge, this is the first report of Lasiodiplodia brasiliensis causing stem-end rot of bananas in the USA. This report would be valuable to the banana growers in the southeastern US by taking suitable control measures to confront this fungal disease.

6.
Int J Mol Sci ; 23(4)2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35216051

RESUMEN

Bacterial leaf scorch (BLS), caused by Xylella fastidiosa (Xf), is a prevalent disease of blueberries in the southeastern United States. Initially, this disease was reported to be caused by X. fastidiosa subsp. multiplex (Xfm). However, a recent survey revealed the presence of another subspecies, X. fastidiosa subsp. fastidiosa (Xff), within naturally infected blueberry plantings in Georgia. Since knowledge regarding the origins of isolates causing Xf outbreaks can impact management recommendations, a routine method for identifying the pathogen at the subspecies level can be beneficial. Several detection strategies are available to identify Xf infection at the subspecies level. However, none of these have been developed for the routine and rapid differentiation of the blueberry-infecting Xf subspecies. Here, we developed two separate straightforward and rapid detection techniques, a cleaved amplified polymorphic sequence (CAPS) marker, and a loop-mediated isothermal amplification (LAMP) assay, targeting the RNA polymerase sigma-70 factor (rpoD) gene sequence of Xfm to discriminate between the two Xf subspecies infecting blueberry. With the CAPS marker, specific detection of Xfm isolates was possible from pure cultures, inoculated greenhouse-grown plant samples, and field infected blueberry samples by restriction digestion of the rpoD gene PCR product (amplified with primers RST31 and RST33) using the BtsI enzyme. The LAMP assay allowed for specific real-time amplification of a 204-bp portion of the XfmrpoD gene from both pure bacterial cultures and infected plant material using the Genie® III system, a result further affirmed by gel electrophoresis and SYBR™ Green I DNA staining for visual observation. These detection strategies have the potential to greatly aid existing diagnostic methods for determining the distribution and prevalence of these Xf subspecies causing bacterial leaf scorch (BLS) in blueberries in the southeastern United States.


Asunto(s)
Arándanos Azules (Planta)/microbiología , Marcadores Genéticos/genética , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Enfermedades de las Plantas/microbiología , Xylella/genética , Cartilla de ADN/genética , Reacción en Cadena de la Polimerasa/métodos
7.
J Fungi (Basel) ; 7(9)2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34575742

RESUMEN

Fusarium oxysporum f. sp. niveum (FON) is the causal agent of Fusarium wilt in watermelon, an international growth-limiting pathogen of watermelon cultivation. A single demethylation inhibitor (DMI) fungicide, prothioconazole, is registered to control this pathogen, so the risk of resistance arising in the field is high. To determine and predict the mechanism by which FON could develop resistance to prothioconazole, FON isolates were mutagenized using UV irradiation and subsequent fungicide exposure to create artificially resistant mutants. Isolates were then put into three groups based on the EC50 values: sensitive, intermediately resistant, and highly resistant. The mean EC50 values were 4.98 µg/mL for the sensitive, 31.77 µg/mL for the intermediately resistant, and 108.33 µg/mL for the highly resistant isolates. Isolates were then sequenced and analyzed for differences in both the coding and promoter regions. Two mutations were found that conferred amino acid changes in the target gene, CYP51A, in both intermediately and highly resistant mutants. An expression analysis for the gene CYP51A also showed a significant increase in the expression of the highly resistant mutants compared to the sensitive controls. In this study, we were able to identify two potential mechanisms of resistance to the DMI fungicide prothioconazole in FON isolates: gene overexpression and multiple point mutations. This research should expedite growers' and researchers' ability to detect and manage fungicide-resistant phytopathogens.

8.
Plants (Basel) ; 10(8)2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34451745

RESUMEN

The 35S promoter with a duplicated enhancer (frequently referred to as 2X35S) is a strong dicotyledonous plant-specific promoter commonly used in generating transgenic plants to enable high-level expression of genes of interest. It is also used to drive the initiation of RNA virus replication from viral cDNA, with the consensus understanding that high levels of viral RNA production powered by 2X35S permit a more efficient initiation of virus replication. Here, we showed that the exact opposite is true. We found that, compared to the Core35S promoter, the 2X35S promoter-driven initiation of turnip crinkle virus (TCV) infection was delayed by at least 24 h. We first compared three versions of 35S promoter, namely 2X35S, 1X35S, and Core35S, for their ability to power the expression of a non-replicating green fluorescent protein (GFP) gene, and confirmed that 2X35S and Core35S correlated with the highest and lowest GFP expression, respectively. However, when inserted upstream of TCV cDNA, 2X35S-driven replication was not detected until 72 h post-inoculation (72 hpi) in inoculated leaves. By contrast, Core35S-driven replication was detected earlier at 48 hpi. A similar delay was also observed in systemically infected leaves (six versus four days post-inoculation). Combining our results, we hypothesized that the stronger 2X35S promoter might enable a higher accumulation of a TCV protein that became a repressor of TCV replication at higher cellular concentration. Extending from these results, we propose that the Core35S (or mini35S) promoter is likely a better choice for generating infectious cDNA clones of TCV.

9.
J Fungi (Basel) ; 7(4)2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33918784

RESUMEN

Aspergillus flavus infects peanuts and produces a mycotoxin called aflatoxin, a potent human carcinogen. In infected peanuts, it can also affect peanut seed quality by causing seed rot and reducing seed viability, resulting in low germination. In 2020, peanut seeds in Georgia had lower than expected germination and a high frequency of A. flavus contamination. A total of 76 Aspergillus isolates were collected from seven seed lots and their identity and in vitro reaction to QoI (quinone outside inhibitor) fungicide (azoxystrobin) were studied. The isolates were confirmed as A. flavus by morphological characteristics and a PCR (polymerase chain reaction)-based method using species-specific primers. In vitro, these isolates were tested for sensitivity to azoxystrobin. The mean EC50 values ranged from 0.12 to 297.22 µg/mL, suggesting that some isolates were resistant or tolerate to this fungicide. The sequences of cytochrome b gene from these isolates were compared and a single nucleotide mutation (36.8% isolates) was found as Cyt B G143A, which was associated with the total resistance to the QoIs. Another single mutation (15.8% isolates) was also observed as Cyt B F129L, which had been documented for QoI resistance. Therefore, a new major single mutation was detected in the A. flavus natural population in this study, and it might explain the cause of the bad seed quality in 2020. The high frequency of this new single nucleotide mutation exists in the natural population of A. flavus and results in the ineffectiveness of using azoxystrobin seed treatment. New seed treatment fungicides are needed.

10.
Plant Dis ; 2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33728955

RESUMEN

Citrus tristeza virus (CTV) [genus Closterovirus; family Closteroviridae] is one of the most important, economically devastating viruses of citrus worldwide. On citrus trees grafted onto sour orange rootstock, typical CTV symptoms include dieback and defoliation, stunting, curling and chlorotic leaves, stem-pitting, and pinholes below the bud union on the inner face of the bark (Moreno et al. 2008). This single-stranded, positive-sense RNA virus is most efficiently transmitted by the brown citrus aphid (Toxoptera citricida), but it can also be transmitted by other aphid species and through grafting of infected plant material onto healthy plants (Moreno et al 2008; Herron et al. 2006). In Fall 2020, leaf material for virus testing was collected from 13 navel orange trees (Citrus × sinensis) grafted onto Poncirus trifoliata rootstocks (including 'Flying Dragon') located in a citrus research orchard in Tifton, GA. Trees ranged in age from 2 to 10 years, with the younger trees having been grafted from cuttings taken from the older trees. The oldest of these trees was derived from cuttings taken in 2009 from an orange tree growing locally in a residential yard in Tifton; this parent tree was more than 15 years old when these cuttings were obtained and was no longer available for sampling as of 2020. Symptoms or other visible signs of disease had not been noted on any of the tested trees, and trees were chosen for testing prior to the further dissemination of this plant material. The presence of CTV was verified via molecular and serological testing. CTV infection was initially confirmed in 8 of 13 tested samples using the ImmunoStrip® for CTV assay (Agdia® Inc., Elkhart, IN, cat no: ISK 78900/0025) according to the manufacturer's instructions. RNA was extracted from leaf material collected from the 13 sampled trees using the RNeasy Plant Mini Kit (Qiagen, Valencia, CA). Following cDNA synthesis, samples were tested for the presence of CTV by reverse-transcription PCR using primer pair AR18F (5'-ATGTCAGGCAGCTTGGGAAATT-3') and AR18R (5'-TTCGTGTCTAAGTCRCGCTAAACA-3') which produces a 511 bp amplicon (Roy et al., 2005). PCR reactions confirmed the presence of CTV, with the same eight samples that had previously tested positive via Immunostrip® producing PCR fragments of the expected size. Amplified products from two of these samples were then sequenced using Sanger sequencing (Retrogen Inc, San Diego, CA, USA) and subjected to BLAST analysis (https://blast.ncbi.nlm.nih.gov/Blast.cgi) for further identification. Sequence analysis revealed that the obtained partial sequences (MW540805) from the p18 gene of both isolates were 100% identical to one another and shared 100% identity to corresponding sequences from CTV strain N4 (MK779711.1). To the best of our knowledge, this is the first report of CTV infecting citrus plants in Georgia. CTV could pose an imminent threat to the emerging citrus industry in Georgia if it were to become established in commercial citrus plantings either via the dissemination of infected plant material or via vector transfer of the virus under field conditions. While the brown citrus aphid is not known to be widespread in Georgia at this time, other CTV vectors are prevalent including the cotton aphid (Aphis gossypii) and the black citrus aphid (T. aurantia). Georgia citrus growers and plant propagators should be aware of this virus and take appropriate control measures to prevent the spread of this viral diseas.

11.
Int J Mol Sci ; 22(2)2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33467563

RESUMEN

Fusarium wilt of watermelon, caused by Fusarium oxysporum f. sp. niveum (FON), is pathogenic only to watermelon and has become one of the main limiting factors in watermelon production internationally. Detection methods for this pathogen are limited, with few published molecular assays available to differentiate FON from other formae speciales of F. oxysporum. FON has four known races that vary in virulence but are difficult and costly to differentiate using traditional inoculation methods and only race 2 can be differentiated molecularly. In this study, genomic and chromosomal comparisons facilitated the development of a conventional polymerase chain reaction (PCR) assay that could differentiate race 3 from races 1 and 2, and by using two other published PCR markers in unison with the new marker, the three races could be differentiated. The new PCR marker, FNR3-F/FNR3-R, amplified a 511 bp region on the "pathogenicity chromosome" of the FON genome that is absent in race 3. FNR3-F/FNR3-R detected genomic DNA down to 2.0 pg/µL. This marker, along with two previously published FON markers, was successfully applied to test over 160 pathogenic FON isolates from Florida, Georgia, and South Carolina. Together, these three FON primer sets worked well for differentiating races 1, 2, and 3 of FON. For each marker, a greater proportion (60 to 90%) of molecular results agreed with the traditional bioassay method of race differentiation compared to those that did not. The new PCR marker should be useful to differentiate FON races and improve Fusarium wilt research.


Asunto(s)
Biomarcadores/metabolismo , ADN de Hongos/genética , Fusarium/genética , Genoma Fúngico/genética , Secuencia de Bases , Citrullus/microbiología , Fusarium/clasificación , Fusarium/patogenicidad , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/microbiología , Reacción en Cadena de la Polimerasa/métodos , Especificidad de la Especie , Virulencia/genética
12.
Sci Transl Med ; 12(567)2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-33115951

RESUMEN

The higher prevalence of inflammatory bowel disease (IBD) in Western countries points to Western diet as a possible IBD risk factor. High sugar, which is linked to many noncommunicable diseases, is a hallmark of the Western diet, but its role in IBD remains unknown. Here, we studied the effects of simple sugars such as glucose and fructose on colitis pathogenesis in wild-type and Il10-/- mice. Wild-type mice fed 10% glucose in drinking water or high-glucose diet developed severe colitis induced by dextran sulfate sodium. High-glucose-fed Il10-/- mice also developed a worsened colitis compared to glucose-untreated Il10-/- mice. Short-term intake of high glucose or fructose did not trigger inflammatory responses in healthy gut but markedly altered gut microbiota composition. In particular, the abundance of the mucus-degrading bacteria Akkermansia muciniphila and Bacteroides fragilis was increased. Consistently, bacteria-derived mucolytic enzymes were enriched leading to erosion of the colonic mucus layer of sugar-fed wild-type and Il10-/- mice. Sugar-induced exacerbation of colitis was not observed when mice were treated with antibiotics or maintained in a germ-free environment, suggesting that altered microbiota played a critical role in sugar-induced colitis pathogenesis. Furthermore, germ-free mice colonized with microbiota from sugar-treated mice showed increased colitis susceptibility. Together, these data suggest that intake of simple sugars predisposes to colitis and enhances its pathogenesis via modulation of gut microbiota in mice.


Asunto(s)
Colitis , Azúcares de la Dieta , Animales , Colitis/inducido químicamente , Sulfato de Dextran , Dieta , Azúcares de la Dieta/efectos adversos , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Monosacáridos
13.
Plant Dis ; 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32931391

RESUMEN

In recent years, citrus production has rapidly increased within the state of Georgia (USA), and there are now citrus plantings within at least 32 counties in residential, production, and nursery settings. Among the pathogens capable of infecting citrus are viroids, the smallest plant pathogens. Viroids are comprised of circular, single-stranded RNA ranging from 246-463 nucleotides in length (Ito et al., 2002). Hop stunt viroid (HSVd) is one of several viroids known to infect citrus. This viroid has been previously reported within Arizona, California, Florida, Texas, and Washington in the United States and in other locations throughout the world (Hadidi, 2017). HSVd is often spread mechanically on contaminated tools or through grafting. With a wide host range that includes the families Moraceae, Rosaceae, and Rutaceae (citrus), this viroid can easily move throughout a nursery and spread to other plants (Hadidi, 2017). Symptoms of HSVd include a discoloration and gumming of phloem tissues, stem pitting, bark splitting, and chlorotic and stunted growth in susceptible citrus varieties including tangerines and their hybrids (Hadidi, 2017). There are not typically symptoms on leaves or fruits; however, lime plants have shown some yellowing on leaves (Hadidi, 2017). In May and June of 2020, leaf samples were collected from 12 different citrus plants in nursery settings in Berrien and Mitchell counties in Georgia. The cultivars sampled from Citrus reticulata 'Dekopon'. The sampled trees looked relatively healthy with little or no signs of damage, but were selected for testing to ensure that they were viroid free. Reverse transcription-polymerase chain reaction (RT-PCR) was initially used to verify infection with HSVd. Genomic RNA was extracted from the leaf tissue of twelve plants using the TRIzol reagent (Thermofisher, Waltham, MA). Following cDNA synthesis, samples were tested for the presence of HSVd using the primer pair HSVd-F (5'-GGCAACTCTTCTCAGAATCCAGC-3') and HSVd-R (5'-CCGGGGCTCCTTTCTCAGGTAAGT-3') which produces a 302 bp amplicon (Sano et al., 1988). The PCR reactions for nine of the tested samples did not result in the production of any bands, however the other three samples, all Citrus reticulata 'Dekopon', produced the expected amplicon for HSVd. The amplified products were sequenced using Sanger sequencing (Retrogen Inc, San Diego, CA, USA) and the identity of the fragment sequences was confirmed using BLAST analysis (https://blast.ncbi.nlm.nih.gov/Blast.cgi). Partial sequences from these amplicons (deposited as accession number MT632007) shared 99% identity to corresponding HSVd sequences in Genbank (accession number MG779542). In addition to RT-PCR and sequencing, the recombinase-polymerase-amplification (RPA) technology based AmplifyRP® Acceler8™ end-point detection assay (Agdia® Inc., Elkhart, IN) was performed on previously confirmed tissue according to the manufacturer's instructions. This assay also confirmed the presence of HSVd viroid in the three samples that had been previously confirmed via RT-PCR. To the best of our knowledge, this is the first report of HSVd infecting Citrus reticulata 'Dekopon' in Georgia. If this viroid were to spread within the growing Georgia citrus industry, it could pose a significant threat to citrus plantings that contain susceptible varieties. Nursery stock infected with this viroid should be destroyed, and Georgia nursery producers and citrus growers should take appropriate precautions to prevent the spread of this viroid disease, including properly sanitizing tools used for citrus grafting and pruning. Further research is needed to determine the distribution of HSVd and its potential to impact commercial citrus production in Georgia.

14.
J Vis Exp ; (160)2020 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-32658194

RESUMEN

Phytophthora capsici is a devastating oomycete pathogen that affects many important solanaceous and cucurbit crops causing significant economic losses in vegetable production annually. Phytophthora capsici is soil-borne and a persistent problem in vegetable fields due to its long-lived survival structures (oospores and chlamydospores) that resist weathering and degradation. The main method of dispersal is through the production of zoospores, which are single-celled, flagellated spores that can swim through thin films of water present on surfaces or in water-filled soil pores and can accumulate in puddles and ponds. Therefore, irrigation ponds can be a source of the pathogen and initial points of disease outbreaks. Detection of P. capsici in irrigation water is difficult using traditional culture-based methods because other microorganisms present in the environment, such as Pythium spp., usually overgrow P. capsici making it undetectable. To determine the presence of P. capsici spores in water sources (irrigation water, runoff, etc.), we developed a hand pump-based filter paper (8-10 µm) method that captures the pathogen's spores (zoospores) and is later used to amplify the pathogen's DNA through a novel loop-mediated isothermal amplification (LAMP) assay designed for the specific amplification of P. capsici. This method can amplify and detect DNA from a concentration as low as 1.2 x 102 zoospores/mL, which is 40 times more sensitive than conventional PCR. No cross-amplification was obtained when testing closely related species. LAMP was also performed using a colorimetric LAMP master mix dye, displaying results that could be read with the naked eye for on-site rapid detection. This protocol could be adapted to other pathogens that reside, accumulate, or are dispersed via contaminated irrigation systems.


Asunto(s)
Riego Agrícola , Técnicas de Amplificación de Ácido Nucleico/métodos , Phytophthora/aislamiento & purificación , Agua/parasitología , ADN/genética , Phytophthora/genética , Suelo/parasitología
15.
PLoS One ; 15(6): e0228123, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32555580

RESUMEN

Meloidogyne partityla is the dominant root-knot nematode (RKN) species parasitizing pecan in Georgia. This species is known to cause a reduction in root growth and a decline in the yields of mature pecan trees. Rapid and accurate diagnosis of this RKN is required to control this nematode disease and reduce losses in pecan production. In this study, a loop-mediated isothermal amplification (LAMP) method was developed for simple, rapid, and on-site detection of M. partityla in infested plant roots and validated to detect the nematode in laboratory and field conditions. Specific primers were designed based on the sequence distinction of the internal transcribed spacer (ITS)-18S/5.8S ribosomal RNA gene between M. partityla and other Meloidogyne spp. The LAMP detection technique could detect the presence of M. partityla genomic DNA at a concentration as low as 1 pg, and no cross reactivity was found with DNA from other major RKN species such as M. javanica, M. incognita and M. arenaria, and M. hapla. We also conducted a traditional morphology-based diagnostic assay and conventional polymerase chain reaction (PCR) assay to determine which of these techniques was less time consuming, more sensitive, and convenient to use in the field. The LAMP assay provided more rapid results, amplifying the target nematode species in less than 60 min at 70°C, with results 100 times more sensitive than conventional PCR (~2-3 hrs). Morphology-based, traditional diagnosis was highly time-consuming (2 days) and more laborious than conventional PCR and LAMP assays. These features greatly simplified the operating procedure and made the assay a powerful tool for rapid, on-site detection of pecan RKN, M. partityla. The developed LAMP assay will facilitate accurate pecan nematode diagnosis in the field and contribute to the management of the pathogen.


Asunto(s)
Laboratorios , Técnicas de Amplificación de Ácido Nucleico , Tylenchoidea/genética , Tylenchoidea/aislamiento & purificación , Animales , Secuencia de Bases , Raíces de Plantas/parasitología , Reacción en Cadena de la Polimerasa , Factores de Tiempo , Tylenchoidea/fisiología
16.
Int J Mol Sci ; 21(5)2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32143404

RESUMEN

A loop-mediated isothermal amplification (LAMP) assay was developed for simple, rapid and efficient detection of Cucurbit leaf crumple virus (CuLCrV), one of the most important begomoviruses that infects cucurbits worldwide. A set of six specific primers targeting a total 240 nt sequence regions in the DNA A of CuLCrV were designed and synthesized for detection of CuLCrV from infected leaf tissues using real-time LAMP amplification with the Genie® III system, which was further confirmed by gel electrophoresis and SYBR™ Green I DNA staining for visual observation. The optimum reaction temperature and time were determined, and no cross-reactivity was seen with other begomoviruses. The LAMP assay could amplify CuLCrV from a mixed virus assay. The sensitivity assay demonstrated that the LAMP reaction was more sensitive than conventional PCR, but less sensitive than qPCR. However, it was simpler and faster than the other assays evaluated. The LAMP assay also amplified CuLCrV-infected symptomatic and asymptomatic samples more efficiently than PCR. Successful LAMP amplification was observed in mixed virus-infected field samples. This simple, rapid, and sensitive method has the capacity to detect CuLCrV in samples collected in the field and is therefore suitable for early detection of the disease to reduce the risk of epidemics.


Asunto(s)
Begomovirus/aislamiento & purificación , ADN Viral/análisis , Técnicas de Diagnóstico Molecular/instrumentación , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/instrumentación , Técnicas de Amplificación de Ácido Nucleico/métodos , Enfermedades de las Plantas/virología , Begomovirus/genética , Cucurbitaceae/virología , Cartilla de ADN/genética , Hojas de la Planta/virología , Reacción en Cadena de la Polimerasa , Reproducibilidad de los Resultados , Riesgo , Sensibilidad y Especificidad
17.
PLoS One ; 14(9): e0221903, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31479482

RESUMEN

Bacterial leaf scorch, caused by Xylella fastidiosa, is a major threat to blueberry production in the southeastern United States. Management of this devastating disease is challenging and often requires early detection of the pathogen to reduce major loss. There are several different molecular and serological detection methods available to identify the pathogen. Knowing the efficiency and suitability of these detection techniques for application in both field and laboratory conditions is important when selecting the appropriate detection tool. Here, we compared the efficiency and the functionality of four different molecular detection techniques (PCR, real-time PCR, LAMP and AmplifyRP® Acceler8™) and one serological detection technique (DAS-ELISA). The most sensitive method was found to be real-time PCR with the detection limit of 25 fg of DNA molecules per reaction (≈9 genome copies), followed by LAMP at 250 fg per reaction (≈90 copies), AmplifyRP® Acceler8™ at 1 pg per reaction (≈350 copies), conventional PCR with nearly 1.25 pg per reaction (≈ 440 copies) and DAS-ELISA with 1x105 cfu/mL of Xylella fastidiosa. Validation between assays with 10 experimental samples gave consistent results beyond the variation of the detection limit. Considering robustness, portability, and cost, LAMP and AmplifyRP® Acceler8™ were not only the fastest methods but also portable to the field and didn't require any skilled labor to carry out. Among those two, AmplifyRP® Acceler8™ was faster but more expensive and less sensitive than LAMP. On the other hand, real-time PCR was the most sensitive assay and required comparatively lesser time than C-PCR and DAS-ELISA, which were the least sensitive assays in this study, but all three assays are not portable and needed skilled labor to proceed. These findings should enable growers, agents, and diagnosticians to make informed decisions regarding the selection of an appropriate diagnostic tool for X. fastidiosa on blueberry.


Asunto(s)
Arándanos Azules (Planta)/microbiología , Enfermedades de las Plantas/microbiología , Xylella/genética , Xylella/inmunología , Anticuerpos Antibacterianos , Antígenos Bacterianos/análisis , Técnicas Bacteriológicas/métodos , ADN Bacteriano/análisis , ADN Bacteriano/genética , Ensayo de Inmunoadsorción Enzimática/métodos , Técnicas Genéticas , Límite de Detección , Técnicas de Amplificación de Ácido Nucleico/métodos , Reacción en Cadena de la Polimerasa/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Xylella/aislamiento & purificación
18.
Vet Microbiol ; 235: 170-179, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31383299

RESUMEN

Turkey arthritis reovirus (TARV) infections have been recognized since 2011 to cause disease and significant economic losses to the U.S. turkey industry. Reoviral arthritis has been reproduced in commercial-origin turkeys. However, determination of pathogenesis or vaccine efficacy in these turkeys can be complicated by enteric reovirus strains and other pathogens that ubiquitously exist at subclinical levels among commercial turkey flocks. In this study, turkeys from a specific-pathogen-free (SPF) flock were evaluated for use as a turkey reoviral arthritis model. One-day-old or 1-week-old poults were orally inoculated with TARV (O'Neil strain) and monitored for disease onset and progression. A gut isolate of turkey reovirus (MN1 strain) was also tested for comparison. Disease was observed only in TARV-infected birds. Features of reoviral arthritis in SPF turkeys included swelling of hock joints, tenosynovitis, distal tibiotarsal cartilage erosion, and gait defects (lameness). Moreover, TARV infection resulted in a significant depression of body weights during the early times post-infection. Age-dependent susceptibility to TARV infection was unclear. TARV was transmitted to all sentinel birds, which manifested high levels of tenosynovitis and tibiotarsal cartilage erosion. Simulation of stressful conditions by dexamethasone treatment did not affect the viral load or exacerbate the disease. Collectively, the clinical and pathological features of reoviral arthritis in the SPF turkey model generally resembled those induced in commercial turkeys under field and/or experimental conditions. The SPF turkey reoviral arthritis model will be instrumental in evaluation of TARV pathogenesis and reoviral vaccine efficacy.


Asunto(s)
Artritis/veterinaria , Modelos Animales de Enfermedad , Infecciones por Reoviridae/veterinaria , Organismos Libres de Patógenos Específicos , Pavos , Animales , Artritis/virología
19.
Arch Virol ; 163(5): 1357-1362, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29411138

RESUMEN

The TOM1/TOM3 genes from Arabidopsis are involved in the replication of tobamoviruses. Tomato homologs of these genes, LeTH1, LeTH2 and LeTH3, are known. In this study, we examined transgenic tomato lines where inverted repeats of either LeTH1, LeTH2 or LeTH3 were introduced by Agrobacterium. Endogenous mRNA expression for each gene was detected in non-transgenic control plants, whereas a very low level of each of the three genes was found in the corresponding line. Small interfering RNA was detected in the transgenic lines. Each silenced line showed similar levels of tobamovirus resistance, indicating that each gene is similarly involved in virus replication.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de la Membrana/genética , Proteínas de Plantas/genética , Interferencia de ARN , Solanum lycopersicum/virología , Tobamovirus/genética , Arabidopsis/genética , Resistencia a la Enfermedad/genética , Secuencias Invertidas Repetidas , Solanum lycopersicum/genética , Enfermedades de las Plantas/virología , Plantas Modificadas Genéticamente/virología , ARN Interferente Pequeño , Tobamovirus/fisiología , Proteínas Virales/genética , Replicación Viral
20.
J Vis Exp ; (120)2017 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-28287576

RESUMEN

The intestine displays an architecture of repetitive crypt structures consisting of different types of epithelial cells, lamina propia containing immune cells, and stroma. All of these heterogeneous cells contribute to intestinal homeostasis and participate in antimicrobial host defense. Therefore, identifying a surrogate model for studying immune response and antimicrobial activity of the intestine in an in vitro setting is extremely challenging. In vitro studies using immortalized intestinal epithelial cell lines or even primary crypt organoid culture do not represent the exact physiology of normal intestine and its microenvironment. Here, we discuss a method of culturing mouse colon tissue in a culture dish and how this ex vivo organ culture system can be implemented in studies related to antimicrobial host defense responses. In representative experiments, we showed that colons in organ culture express antimicrobial peptides in response to exogenous IL-1ß and IL-18. Further, the antimicrobial effector molecules produced by the colon tissues in the organ culture efficiently kill Escherichia coli in vitro. This approach, therefore, can be utilized to dissect the role of pathogen- and danger-associated molecular patterns and their cellular receptors in regulating intestinal innate immune responses and antimicrobial host defense responses.


Asunto(s)
Antiinfecciosos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Colon/citología , Medios de Cultivo/farmacología , Escherichia coli/efectos de los fármacos , Mucosa Intestinal/citología , Animales , Colon/metabolismo , Recuento de Colonia Microbiana , Inmunidad Innata , Mucosa Intestinal/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Técnicas de Cultivo de Órganos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...