RESUMEN
Biomedical ontologies are large: Several ontologies in the BioPortal repository contain thousands or even hundreds of thousands of entities. The development and maintenance of such large ontologies is difficult. To support ontology authors and repository developers in their work, it is crucial to improve our understanding of how these ontologies are explored, queried, reused, and used in downstream applications by biomedical researchers. We present an exploratory empirical analysis of user activities in the BioPortal ontology repository by analyzing BioPortal interaction logs across different access modes over several years. We investigate how users of BioPortal query and search for ontologies and their classes, how they explore the ontologies, and how they reuse classes from different ontologies. Additionally, through three real-world scenarios, we not only analyze the usage of ontologies for annotation tasks but also compare it to the browsing and querying behaviors of BioPortal users. For our investigation, we use several different visualization techniques. To inspect large amounts of interaction, reuse, and real-world usage data at a glance, we make use of and extend PolygOnto, a visualization method that has been successfully used to analyze reuse of ontologies in previous work. Our results show that exploration, query, reuse, and actual usage behaviors rarely align, suggesting that different users tend to explore, query and use different parts of an ontology. Finally, we highlight and discuss differences and commonalities among users of BioPortal.
RESUMEN
BiOnIC is a catalog of aggregated statistics of user clicks, queries, and reuse counts for access to over 200 biomedical ontologies. BiOnIC also provides anonymized sequences of classes accessed by users over a period of four years. To generate the statistics, we processed the access logs of BioPortal, a large open biomedical ontology repository. We publish the BiOnIC data using DCAT and SKOS metadata standards. The BiOnIC catalog has a wide range of applicability, which we demonstrate through its use in three different types of applications. To our knowledge, this type of interaction data stemming from a real-world, large-scale application has not been published before. We expect that the catalog will become an important resource for researchers and developers in the Semantic Web community by providing novel insights into how ontologies are explored, queried and reused. The BiOnIC catalog may ultimately assist in the more informed development of intelligent user interfaces for semantic resources through interface customization, prediction of user browsing and querying behavior, and ontology summarization. The BiOnIC catalog is available at: http://onto-apps.stanford.edu/bionic.
RESUMEN
Biomedical taxonomies, thesauri and ontologies in the form of the International Classification of Diseases as a taxonomy or the National Cancer Institute Thesaurus as an OWL-based ontology, play a critical role in acquiring, representing and processing information about human health. With increasing adoption and relevance, biomedical ontologies have also significantly increased in size. For example, the 11th revision of the International Classification of Diseases, which is currently under active development by the World Health Organization contains nearly 50,000 classes representing a vast variety of different diseases and causes of death. This evolution in terms of size was accompanied by an evolution in the way ontologies are engineered. Because no single individual has the expertise to develop such large-scale ontologies, ontology-engineering projects have evolved from small-scale efforts involving just a few domain experts to large-scale projects that require effective collaboration between dozens or even hundreds of experts, practitioners and other stakeholders. Understanding the way these different stakeholders collaborate will enable us to improve editing environments that support such collaborations. In this paper, we uncover how large ontology-engineering projects, such as the International Classification of Diseases in its 11th revision, unfold by analyzing usage logs of five different biomedical ontology-engineering projects of varying sizes and scopes using Markov chains. We discover intriguing interaction patterns (e.g., which properties users frequently change after specific given ones) that suggest that large collaborative ontology-engineering projects are governed by a few general principles that determine and drive development. From our analysis, we identify commonalities and differences between different projects that have implications for project managers, ontology editors, developers and contributors working on collaborative ontology-engineering projects and tools in the biomedical domain.
Asunto(s)
Ontologías Biológicas , Conducta Cooperativa , Cadenas de Markov , Modelos Estadísticos , Procesamiento de Lenguaje Natural , Reconocimiento de Normas Patrones Automatizadas/métodos , Inteligencia Artificial , Simulación por Computador , Interpretación Estadística de Datos , Clasificación Internacional de Enfermedades/clasificación , Clasificación Internacional de Enfermedades/organización & administración , Internacionalidad , SemánticaRESUMEN
Traditionally, evaluation methods in the field of semantic technologies have focused on the end result of ontology engineering efforts, mainly, on evaluating ontologies and their corresponding qualities and characteristics. This focus has led to the development of a whole arsenal of ontology-evaluation techniques that investigate the quality of ontologies as a product. In this paper, we aim to shed light on the process of ontology engineering construction by introducing and applying a set of measures to analyze hidden social dynamics. We argue that especially for ontologies which are constructed collaboratively, understanding the social processes that have led to its construction is critical not only in understanding but consequently also in evaluating the ontology. With the work presented in this paper, we aim to expose the texture of collaborative ontology engineering processes that is otherwise left invisible. Using historical change-log data, we unveil qualitative differences and commonalities between different collaborative ontology engineering projects. Explaining and understanding these differences will help us to better comprehend the role and importance of social factors in collaborative ontology engineering projects. We hope that our analysis will spur a new line of evaluation techniques that view ontologies not as the static result of deliberations among domain experts, but as a dynamic, collaborative and iterative process that needs to be understood, evaluated and managed in itself. We believe that advances in this direction would help our community to expand the existing arsenal of ontology evaluation techniques towards more holistic approaches.
RESUMEN
With the emergence of tools for collaborative ontology engineering, more and more data about the creation process behind collaborative construction of ontologies is becoming available. Today, collaborative ontology engineering tools such as Collaborative Protégé offer rich and structured logs of changes, thereby opening up new challenges and opportunities to study and analyze the creation of collaboratively constructed ontologies. While there exists a plethora of visualization tools for ontologies, they have primarily been built to visualize aspects of the final product (the ontology) and not the collaborative processes behind construction (e.g. the changes made by contributors over time). To the best of our knowledge, there exists no ontology visualization tool today that focuses primarily on visualizing the history behind collaboratively constructed ontologies. Since the ontology engineering processes can influence the quality of the final ontology, we believe that visualizing process data represents an important stepping-stone towards better understanding of managing the collaborative construction of ontologies in the future. In this application paper, we present a tool - PragmatiX - which taps into structured change logs provided by tools such as Collaborative Protégé to visualize various pragmatic aspects of collaborative ontology engineering. The tool is aimed at managers and leaders of collaborative ontology engineering projects to help them in monitoring progress, in exploring issues and problems, and in tracking quality-related issues such as overrides and coordination among contributors. The paper makes the following contributions: (i) we present PragmatiX, a tool for visualizing the creation process behind collaboratively constructed ontologies (ii) we illustrate the functionality and generality of the tool by applying it to structured logs of changes of two large collaborative ontology-engineering projects and (iii) we conduct a heuristic evaluation of the tool with domain experts to uncover early design challenges and opportunities for improvement. Finally, we hope that this work sparks a new line of research on visualization tools for collaborative ontology engineering projects.