RESUMEN
This study sheds light on the pivotal role of the oncoprotein DEK in B-cell lymphoma. We reveal DEK expression correlates with increased tumor proliferation and inferior overall survival in cases diagnosed with low-grade B-cell lymphoma (LGBCL). We also found significant correlation between DEK expression and copy number alterations in LGBCL tumors, highlighting a novel mechanism of LGBCL pathogenesis that warrants additional exploration. To interrogate the mechanistic role of DEK in B-cell lymphoma, we generated a DEK knockout cell line model, which demonstrated DEK depletion caused reduced proliferation and altered expression of key cell cycle and apoptosis-related proteins, including Bcl-2, Bcl-xL, and p53. Notably, DEK depleted cells showed increased sensitivity to apoptosis-inducing agents, including venetoclax and staurosporine, which underscores the therapeutic potential of targeting DEK in B-cell lymphomas. Overall, our study contributes to a better understanding of DEK's role as an oncoprotein in B-cell lymphomas, highlighting its potential as both a promising therapeutic target and a novel biomarker for aggressive LGBCL. Further research elucidating the molecular mechanisms underlying DEK-mediated tumorigenesis could pave the way for improved treatment strategies and better clinical outcomes for patients with B-cell lymphoma.
Asunto(s)
Proliferación Celular , Proteínas Cromosómicas no Histona , Linfoma de Células B , Proteínas Oncogénicas , Proteínas de Unión a Poli-ADP-Ribosa , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Humanos , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Linfoma de Células B/metabolismo , Linfoma de Células B/genética , Linfoma de Células B/patología , Línea Celular Tumoral , Linfocitos B/metabolismo , Linfocitos B/patología , Apoptosis , Femenino , Regulación Neoplásica de la Expresión Génica , Masculino , Clasificación del TumorRESUMEN
Recent genetic and molecular classification of DLBCL has advanced our knowledge of disease biology, yet were not designed to predict early events and guide anticipatory selection of novel therapies. To address this unmet need, we used an integrative multiomic approach to identify a signature at diagnosis that will identify DLBCL at high risk of early clinical failure. Tumor biopsies from 444 newly diagnosed DLBCL were analyzed by WES and RNAseq. A combination of weighted gene correlation network analysis and differential gene expression analysis was used to identify a signature associated with high risk of early clinical failure independent of IPI and COO. Further analysis revealed the signature was associated with metabolic reprogramming and identified cases with a depleted immune microenvironment. Finally, WES data was integrated into the signature and we found that inclusion of ARID1A mutations resulted in identification of 45% of cases with an early clinical failure which was validated in external DLBCL cohorts. This novel and integrative approach is the first to identify a signature at diagnosis, in a real-world cohort of DLBCL, that identifies patients at high risk for early clinical failure and may have significant implications for design of therapeutic options.
Asunto(s)
Linfoma de Células B Grandes Difuso , Humanos , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/diagnóstico , Masculino , Femenino , Perfilación de la Expresión Génica , Persona de Mediana Edad , Transcriptoma , Mutación , Regulación Neoplásica de la Expresión Génica , Factores de Transcripción/genética , Biomarcadores de Tumor/genética , Anciano , Pronóstico , Microambiente Tumoral , Secuenciación del Exoma , Adulto , Proteínas de Unión al ADN/genética , Insuficiencia del TratamientoRESUMEN
PURPOSE: 60-70% of newly diagnosed diffuse large B-cell lymphoma (DLBCL) patients avoid events within 24 months of diagnosis (EFS24) and the remainder have poor outcomes. Recent genetic and molecular classification of DLBCL has advanced our knowledge of disease biology, yet were not designed to predict early events and guide anticipatory selection of novel therapies. To address this unmet need, we used an integrative multiomic approach to identify a signature at diagnosis that will identify DLBCL at high risk of early clinical failure. PATIENTS AND METHODS: Tumor biopsies from 444 newly diagnosed DLBCL were analyzed by WES and RNAseq. A combination of weighted gene correlation network analysis and differential gene expression analysis followed by integration with clinical and genomic data was used to identify a multiomic signature associated with high risk of early clinical failure. RESULTS: Current DLBCL classifiers are unable to discriminate cases who fail EFS24. We identified a high risk RNA signature that had a hazard ratio (HR, 18.46 [95% CI 6.51-52.31] P < .001) in a univariate model, which did not attenuate after adjustment for age, IPI and COO (HR, 20.8 [95% CI, 7.14-61.09] P < .001). Further analysis revealed the signature was associated with metabolic reprogramming and a depleted immune microenvironment. Finally, WES data was integrated into the signature and we found that inclusion of ARID1A mutations resulted in identification of 45% of cases with an early clinical failure which was validated in external DLBCL cohorts. CONCLUSION: This novel and integrative approach is the first to identify a signature at diagnosis that will identify DLBCL at high risk for early clinical failure and may have significant implications for design of therapeutic options.
RESUMEN
Richter's Transformation (RT) is a poorly understood and fatal progression of chronic lymphocytic leukemia (CLL) manifesting histologically as diffuse large B-cell lymphoma. Protein arginine methyltransferase 5 (PRMT5) is implicated in lymphomagenesis, but its role in CLL or RT progression is unknown. We demonstrate herein that tumors uniformly overexpress PRMT5 in patients with progression to RT. Furthermore, mice with B-specific overexpression of hPRMT5 develop a B-lymphoid expansion with increased risk of death, and Eµ-PRMT5/TCL1 double transgenic mice develop a highly aggressive disease with transformation that histologically resembles RT; where large-scale transcriptional profiling identifies oncogenic pathways mediating PRMT5-driven disease progression. Lastly, we report the development of a SAM-competitive PRMT5 inhibitor, PRT382, with exclusive selectivity and optimal in vitro and in vivo activity compared to available PRMT5 inhibitors. Taken together, the discovery that PRMT5 drives oncogenic pathways promoting RT provides a compelling rationale for clinical investigation of PRMT5 inhibitors such as PRT382 in aggressive CLL/RT cases.
Asunto(s)
Leucemia Linfocítica Crónica de Células B , Linfoma de Células B Grandes Difuso , Animales , Ratones , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/patología , Linfoma de Células B Grandes Difuso/patologíaRESUMEN
Using a genome-wide CRISPR screen, we identified CDK9, DHODH, and PRMT5 as synthetic lethal partners with gilteritinib treatment in fms-like tyrosine kinase 3 (FLT3)-internal tandem duplication (ITD) acute myeloid leukemia (AML) and genetically and pharmacologically validated their roles in gilteritinib sensitivity. The presence of FLT3-ITD is associated with an increase in anaerobic glycolysis, rendering leukemia cells highly sensitive to inhibition of glycolysis. Supportive of this, our data show the enrichment of single guide RNAs targeting 28 glycolysis-related genes upon gilteritinib treatment, suggesting that switching from glycolysis to oxidative phosphorylation (OXPHOS) may represent a metabolic adaption of AML in gilteritinib resistance. CDK9i/FLT3i, DHODHi/FLT3i, and PRMT5i/FLT3i pairs mechanistically converge on OXPHOS and purine biosynthesis blockade, implying that targeting the metabolic functions of these three genes and/or proteins may represent attractive strategies to sensitize AML to gilteritinib treatment. Our findings provide the basis for maximizing therapeutic impact of FLT3-ITD inhibitors and a rationale for a clinical trial of these novel combinations.
RESUMEN
PURPOSE: Dual blockade of Bruton's tyrosine kinase with ibrutinib and selinexor has potential to deepen responses for patients with chronic lymphocytic leukemia (CLL) and non-Hodgkin lymphoma (NHL). PATIENTS AND METHODS: In this phase I study (clinicaltrials.gov: NCT02303392), adult patients with CLL/NHL, relapsed/refractory to ≥1 prior therapy were enrolled. Patients received weekly oral selinexor and daily oral ibrutinib in 28-day cycles until progression or intolerance. Primary objective was to determine MTD. RESULTS: Included patients had CLL (n = 16) or NHL (n = 18; 9 Richter transformation, 6 diffuse large B-cell lymphoma, and 3 mantle cell lymphoma). Median prior therapies were 4 (range = 1-14) and 59% previously received ibrutinib. The established MTD was 40 mg of selinexor (days 1, 8, 15) and 420 mg daily ibrutinib. Common nonhematologic adverse events were fatigue (56%), nausea (53%), anorexia (41%), and diarrhea (41%) and were mostly low grade. Overall response rate was 32%. An additional 47% achieved stable disease (SD), some prolonged (up to 36 months). Median progression-free survival for patients with CLL and NHL was 8.9 [95% confidence interval (CI), 3.9-16.1] and 2.7 (95% CI, 0.7-5.4) months, respectively. For patients with CLL who did not receive prior ibrutinib, only 20% (1/5) progressed. Estimated 2-year overall survival was 73.7% (95% CI, 44.1-89.2) and 27.8% (95% CI, 10.1-48.9) for patients with CLL and NHL, respectively. CONCLUSIONS: The selinexor and ibrutinib combination has demonstrated tolerability in patients with relapsed/refractory CLL/NHL. Responses were durable. Notable responses were seen in patients with CLL with minimal prior therapy. Future study of this combination will focus on efforts to deepen remissions in patients with CLL receiving ibrutinib therapy.
Asunto(s)
Leucemia Linfocítica Crónica de Células B , Linfoma de Células B Grandes Difuso , Linfoma no Hodgkin , Adenina/análogos & derivados , Adulto , Humanos , Hidrazinas , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Piperidinas , Pirazoles/efectos adversos , Pirimidinas/efectos adversos , TriazolesRESUMEN
Rare, recurrent balanced translocations occur in a variety of cancers but are often not functionally interrogated. Balanced translocations with the immunoglobulin heavy chain locus (IGH; 14q32) in chronic lymphocytic leukemia (CLL) are infrequent but have led to the discovery of pathogenic genes including CCND1, BCL2, and BCL3. Following identification of a t(X;14)(q28;q32) translocation that placed the mature T cell proliferation 1 gene (MTCP1) adjacent to the immunoglobulin locus in a CLL patient, we hypothesized that this gene may have previously unrecognized importance. Indeed, here we report overexpression of human MTCP1 restricted to the B cell compartment in mice produces a clonal CD5+/CD19+ leukemia recapitulating the major characteristics of human CLL and demonstrates favorable response to therapeutic intervention with ibrutinib. We reinforce the importance of genetic interrogation of rare, recurrent balanced translocations to identify cancer driving genes via the story of MTCP1 as a contributor to CLL pathogenesis.
Asunto(s)
Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Translocación Genética , Adulto , Anciano , Anciano de 80 o más Años , Animales , Proteínas del Linfoma 3 de Células B , Ciclina D1 , Femenino , Regulación de la Expresión Génica , Genes de las Cadenas Pesadas de las Inmunoglobulinas , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Oncogenes/genética , Proteínas Proto-Oncogénicas c-bcl-2RESUMEN
BACKGROUND: Exportin 1 (XPO1/CRM1) is a key mediator of nuclear export with relevance to multiple cancers, including chronic lymphocytic leukemia (CLL). Whole exome sequencing has identified hot-spot somatic XPO1 point mutations which we found to disrupt highly conserved biophysical interactions in the NES-binding groove, conferring novel cargo-binding abilities and forcing cellular mis-localization of critical regulators. However, the pathogenic role played by change-in-function XPO1 mutations in CLL is not fully understood. METHODS: We performed a large, multi-center retrospective analysis of CLL cases (N = 1286) to correlate nonsynonymous mutations in XPO1 (predominantly E571K or E571G; n = 72) with genetic and epigenetic features contributing to the overall outcomes in these patients. We then established a mouse model with over-expression of wildtype (wt) or mutant (E571K or E571G) XPO1 restricted to the B cell compartment (Eµ-XPO1). Eµ-XPO1 mice were then crossed with the Eµ-TCL1 CLL mouse model. Lastly, we determined crystal structures of XPO1 (wt or E571K) bound to several selective inhibitors of nuclear export (SINE) molecules (KPT-185, KPT-330/Selinexor, and KPT-8602/Eltanexor). RESULTS: We report that nonsynonymous mutations in XPO1 associate with high risk genetic and epigenetic features and accelerated CLL progression. Using the newly-generated Eµ-XPO1 mouse model, we found that constitutive B-cell over-expression of wt or mutant XPO1 could affect development of a CLL-like disease in aged mice. Furthermore, concurrent B-cell expression of XPO1 with E571K or E571G mutations and TCL1 accelerated the rate of leukemogenesis relative to that of Eµ-TCL1 mice. Lastly, crystal structures of E571 or E571K-XPO1 bound to SINEs, including Selinexor, are highly similar, suggesting that the activity of this class of compounds will not be affected by XPO1 mutations at E571 in patients with CLL. CONCLUSIONS: These findings indicate that mutations in XPO1 at E571 can drive leukemogenesis by priming the pre-neoplastic lymphocytes for acquisition of additional genetic and epigenetic abnormalities that collectively result in neoplastic transformation.
Asunto(s)
Regulación Leucémica de la Expresión Génica , Carioferinas/genética , Leucemia Linfocítica Crónica de Células B/genética , Mutación , Receptores Citoplasmáticos y Nucleares/genética , Animales , Epigénesis Genética , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Modelos Moleculares , Estudios Retrospectivos , Transcriptoma , Proteína Exportina 1RESUMEN
Recent measures to classify novel molecular targets with therapeutic potential across multiple hematologic tumors have identified the eukaryotic nuclear exporter, exportin 1 (XPO1), as a promising candidate. Molecular agents termed 'Selective Inhibitors of Nuclear Export' (SINEs) have been developed to selectively inhibit the essential regulatory functions of XPO1 in the eukaryotic cell and have been extensively studied in pre-clinical and clinical tumor models. Recently, selinexor (XPOVIO™), a first-in-class oral SINE molecule, was granted accelerated approval by the United States FDA for penta-refractory multiple myeloma. To establish a complete profile of this emerging drug candidate, this article reviews evidence collected from recent clinical studies against both solid and liquid tumors, describing selinexor as a promising new anti-cancer pharmaceutic against late-stage and highly aggressive tumors. With management of well-defined and predictable adverse effects, selinexor can be a life-saving therapeutic option in cancer patients with few alternatives.
Asunto(s)
Neoplasias Hematológicas , Hidrazinas , Línea Celular Tumoral , Neoplasias Hematológicas/tratamiento farmacológico , Humanos , Triazoles/uso terapéuticoRESUMEN
The E571K mutation of CRM1 is highly prevalent in some cancers, but its mechanism of tumorigenesis is unclear. Glu571 of CRM1 is located in its nuclear export signal (NES)-binding groove, suggesting that binding of select NESs may be altered. We generated HEK 293 cells with either monoallelic CRM1WT/E571K or biallelic CRM1E571K/E571K using CRISPR/Cas9. We also combined analysis of binding affinities and structures of 27 diverse NESs for wild-type and E571K CRM1 with structure-based bioinformatics. While most NESs bind the two CRM1 similarly, NESs from Mek1, eIF4E-transporter, and RPS2 showed >10-fold affinity differences. These NESs have multiple charged side chains binding close to CRM1 position 571, but this feature alone was not sufficient to predict different binding to CRM1(E571K). Consistent with eIF4E-transporter NES binding weaker to CRM1(E571K), eIF4E-transporter was mislocalized in tumor cells carrying CRM1(E571K). This serves as proof of concept that understanding how CRM1(E571K) affects NES binding provides a platform for identifying cargoes that are mislocalized in cancer upon CRM1 mutation. Finally, we showed that large affinity changes seen with some NES peptides (of Mek1 and RPS2) do not always translate to the full-length cargoes, suggesting limitations with current NES prediction methods. Therefore, comprehensive studies like ours are imperative to identify CRM1 cargoes with real pathogenic potential.