Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Trends Biotechnol ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38575438

RESUMEN

Killer yeasts secrete protein toxins that are selectively lethal to other yeast and filamentous fungi. These exhibit exceptional genetic and functional diversity, and have several biotechnological applications. However, despite decades of research, several limitations hinder their widespread adoption. In this perspective we contend that technical advances in synthetic biology present an unprecedented opportunity to unlock the full potential of yeast killer systems across a spectrum of applications. By leveraging these new technologies, engineered killer toxins may emerge as a pivotal new tool to address antifungal resistance and food security. Finally, we speculate on the biotechnological potential of re-engineering host double-stranded (ds) RNA mycoviruses, from which many toxins derive, as a safe and noninfectious system to produce designer RNA.

2.
Microb Genom ; 10(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38625719

RESUMEN

Genome sequencing and assembly of the photosynthetic picoeukaryotic Picochlorum sp. SENEW3 revealed a compact genome with a reduced gene set, few repetitive sequences, and an organized Rabl-like chromatin structure. Hi-C chromosome conformation capture revealed evidence of possible chromosomal translocations, as well as putative centromere locations. Maintenance of a relatively few selenoproteins, as compared to similarly sized marine picoprasinophytes Mamiellales, and broad halotolerance compared to others in Trebouxiophyceae, suggests evolutionary adaptation to variable salinity environments. Such adaptation may have driven size and genome minimization and have been enabled by the retention of a high number of membrane transporters. Identification of required pathway genes for both CAM and C4 photosynthetic carbon fixation, known to exist in the marine mamiellale pico-prasinophytes and seaweed Ulva, but few other chlorophyte species, further highlights the unique adaptations of this robust alga. This high-quality assembly provides a significant advance in the resources available for genomic investigations of this and other photosynthetic picoeukaryotes.


Asunto(s)
Genómica , Fotosíntesis , Mapeo Cromosómico , Fotosíntesis/genética , Cromosomas , Cromatina/genética
3.
Cell Rep Methods ; 4(4): 100761, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38653205

RESUMEN

The international Synthetic Yeast Project (Sc2.0) aims to construct the first synthetic designer eukaryote genome. Over the past few years, the Sc2.0 consortium has achieved several significant milestones by synthesizing and characterizing all 16 nuclear chromosomes of the yeast Saccharomyces cerevisiae, as well as a 17thde novo neochromosome containing all nuclear tRNA genes. In this commentary, we discuss the recent technological advances achieved in this project and provide a perspective on how they will impact the emerging field of synthetic genomics in the future.


Asunto(s)
Genoma Fúngico , Saccharomyces cerevisiae , Ingeniería Genética/métodos , Genoma Fúngico/genética , Genómica/métodos , Saccharomyces cerevisiae/genética , Biología Sintética/métodos
4.
Cell ; 186(24): 5220-5236.e16, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37944511

RESUMEN

The Sc2.0 project is building a eukaryotic synthetic genome from scratch. A major milestone has been achieved with all individual Sc2.0 chromosomes assembled. Here, we describe the consolidation of multiple synthetic chromosomes using advanced endoreduplication intercrossing with tRNA expression cassettes to generate a strain with 6.5 synthetic chromosomes. The 3D chromosome organization and transcript isoform profiles were evaluated using Hi-C and long-read direct RNA sequencing. We developed CRISPR Directed Biallelic URA3-assisted Genome Scan, or "CRISPR D-BUGS," to map phenotypic variants caused by specific designer modifications, known as "bugs." We first fine-mapped a bug in synthetic chromosome II (synII) and then discovered a combinatorial interaction associated with synIII and synX, revealing an unexpected genetic interaction that links transcriptional regulation, inositol metabolism, and tRNASerCGA abundance. Finally, to expedite consolidation, we employed chromosome substitution to incorporate the largest chromosome (synIV), thereby consolidating >50% of the Sc2.0 genome in one strain.


Asunto(s)
Cromosomas Artificiales de Levadura , Genoma Fúngico , Saccharomyces cerevisiae , Secuencia de Bases , Cromosomas/genética , Saccharomyces cerevisiae/genética , Biología Sintética
5.
Cell ; 186(24): 5237-5253.e22, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37944512

RESUMEN

Here, we report the design, construction, and characterization of a tRNA neochromosome, a designer chromosome that functions as an additional, de novo counterpart to the native complement of Saccharomyces cerevisiae. Intending to address one of the central design principles of the Sc2.0 project, the ∼190-kb tRNA neochromosome houses all 275 relocated nuclear tRNA genes. To maximize stability, the design incorporates orthogonal genetic elements from non-S. cerevisiae yeast species. Furthermore, the presence of 283 rox recombination sites enables an orthogonal tRNA SCRaMbLE system. Following construction in yeast, we obtained evidence of a potent selective force, manifesting as a spontaneous doubling in cell ploidy. Furthermore, tRNA sequencing, transcriptomics, proteomics, nucleosome mapping, replication profiling, FISH, and Hi-C were undertaken to investigate questions of tRNA neochromosome behavior and function. Its construction demonstrates the remarkable tractability of the yeast model and opens up opportunities to directly test hypotheses surrounding these essential non-coding RNAs.


Asunto(s)
Cromosomas Artificiales de Levadura , Genoma Fúngico , Saccharomyces cerevisiae , Perfilación de la Expresión Génica , Proteómica , Saccharomyces cerevisiae/genética , Biología Sintética , ARN de Transferencia/genética , Cromosomas Artificiales de Levadura/genética
6.
Cell Genom ; 3(11): 100418, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38020971

RESUMEN

We describe construction of the synthetic yeast chromosome XI (synXI) and reveal the effects of redesign at non-coding DNA elements. The 660-kb synthetic yeast genome project (Sc2.0) chromosome was assembled from synthesized DNA fragments before CRISPR-based methods were used in a process of bug discovery, redesign, and chromosome repair, including precise compaction of 200 kb of repeat sequence. Repaired defects were related to poor centromere function and mitochondrial health and were associated with modifications to non-coding regions. As part of the Sc2.0 design, loxPsym sequences for Cre-mediated recombination are inserted between most genes. Using the GAP1 locus from chromosome XI, we show that these sites can facilitate induced extrachromosomal circular DNA (eccDNA) formation, allowing direct study of the effects and propagation of these important molecules. Construction and characterization of synXI contributes to our understanding of non-coding DNA elements, provides a useful tool for eccDNA study, and will inform future synthetic genome design.

7.
Cell Genom ; 3(11): 100379, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38020977

RESUMEN

Synthetic chromosome engineering is a complex process due to the need to identify and repair growth defects and deal with combinatorial gene essentiality when rearranging chromosomes. To alleviate these issues, we have demonstrated novel approaches for repairing and rearranging synthetic Saccharomyces cerevisiae genomes. We have designed, constructed, and restored wild-type fitness to a synthetic 753,096-bp version of S. cerevisiae chromosome XIV as part of the Synthetic Yeast Genome project. In parallel to the use of rational engineering approaches to restore wild-type fitness, we used adaptive laboratory evolution to generate a general growth-defect-suppressor rearrangement in the form of increased TAR1 copy number. We also extended the utility of the synthetic chromosome recombination and modification by loxPsym-mediated evolution (SCRaMbLE) system by engineering synthetic-wild-type tetraploid hybrid strains that buffer against essential gene loss, highlighting the plasticity of the S. cerevisiae genome in the presence of rational and non-rational modifications.

8.
Yeast ; 40(10): 443-456, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37653687

RESUMEN

Yeast research is entering into a new period of scholarship, with new scientific tools, new questions to ask and new issues to consider. The politics of emerging and critical technology can no longer be separated from the pursuit of basic science in fields, such as synthetic biology and engineering biology. Given the intensifying race for technological leadership, yeast research is likely to attract significant investment from government, and that it offers huge opportunities to the curious minded from a basic research standpoint. This article provides an overview of new directions in yeast research with a focus on Saccharomyces cerevisiae, and places these trends in their geopolitical context. At the highest level, yeast research is situated within the ongoing convergence of the life sciences with the information sciences. This convergent effect is most strongly pronounced in areas of AI-enabled tools for the life sciences, and the creation of synthetic genomes, minimal genomes, pan-genomes, neochromosomes and metagenomes using computer-assisted design tools and methodologies. Synthetic yeast futures encompass basic and applied science questions that will be of intense interest to government and nongovernment funding sources. It is essential for the yeast research community to map and understand the context of their research to ensure their collaborations turn global challenges into research opportunities.

9.
FEMS Yeast Res ; 232023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36708173

RESUMEN

Wine is composed of multitudinous flavour components and volatile organic compounds that provide this beverage with its attractive properties of taste and aroma. The perceived quality of a wine can be attributed to the absolute and relative concentrations of favourable aroma compounds; hence, increasing the detectable levels of an attractive aroma, such as ß-ionone with its violet and berry notes, can improve the organoleptic qualities of given wine styles. We here describe the generation of a new grape-must fermenting strain of Saccharomyces cerevisiae that is capable of releasing ß-ionone through the heterologous expression of both the enzyme carotenoid cleavage dioxygenase 1 (CCD1) and its substrate, ß-carotene. Haploid laboratory strains of S. cerevisiae were constructed with and without integrated carotenogenic genes and transformed with a plasmid containing the genes of CCD1. These strains were then mated with a sporulated diploid wine industry yeast, VIN13, and four resultant crosses-designated MQ01-MQ04-which were capable of fermenting the must to dryness were compared for their ability to release ß-ionone. Analyses of their fermentation products showed that the MQ01 strain produced a high level of ß-ionone and offers a fermenting hybrid yeast with the potential to enhance the organoleptic qualities of wine.


Asunto(s)
Saccharomyces cerevisiae , Vino , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Odorantes , Norisoprenoides/metabolismo , Fermentación
10.
Nat Food ; 3(4): 249-254, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-37118192

RESUMEN

Wine fermentation is a representation of complex higher-order microbial interactions. Despite the beneficial properties that these communities bring to wine, their complexity poses challenges in predicting the nature and outcome of fermentation. Technological developments in synthetic biology enable the potential to engineer synthetic microbial communities for new purposes. Here we present the challenges and applications of engineered yeast communities in the context of a wine fermentation vessel, how this represents a model system to enable novel solutions for winemaking and introduce the concept of a 'synthetic' terroir. Furthermore, we introduce our vision for the application of control engineering.

11.
Adv Appl Microbiol ; 105: 87-129, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30342724

RESUMEN

The production of ethanol by yeast fermentation represents the largest of all global biotechnologies. Consequently, the yeast Saccharomyces cerevisiae is the world's premier industrial microorganism, which is responsible not only for the production of alcoholic beverages, including beer, wine, and distilled spirits, but also for the billions of liters of bioethanol produced annually for use as a renewable transportation fuel. Although humankind has exploited the fermentative activities of yeasts for millennia, many aspects of alcohol fermentation remain poorly understood. This chapter will review some of the key considerations in optimizing industrial alcohol fermentations with a particular emphasis on enhancement opportunities involving cell physiology and strain engineering of the major microbial ethanologen, the yeast S. cerevisiae.


Asunto(s)
Etanol/metabolismo , Glucosa/metabolismo , Microbiología Industrial/métodos , Ingeniería Metabólica/métodos , Saccharomyces cerevisiae/metabolismo , Fermentación , Redes y Vías Metabólicas/genética , Saccharomyces cerevisiae/crecimiento & desarrollo
12.
Genes (Basel) ; 9(7)2018 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-29986380

RESUMEN

Engineered yeast are an important production platform for the biosynthesis of high-value compounds with medical applications. Recent years have witnessed several new developments in this area, largely spurred by advances in the field of synthetic biology and the elucidation of natural metabolic pathways. This minireview presents an overview of synthetic biology applications for the heterologous biosynthesis of biopharmaceuticals in yeast and demonstrates the power and potential of yeast cell factories by highlighting several recent examples. In addition, an outline of emerging trends in this rapidly-developing area is discussed, hinting upon the potential state-of-the-art in the years ahead.

13.
Science ; 355(6329)2017 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-28280149

RESUMEN

We designed and synthesized a 976,067-base pair linear chromosome, synXII, based on native chromosome XII in Saccharomyces cerevisiae SynXII was assembled using a two-step method, specified by successive megachunk integration and meiotic recombination-mediated assembly, producing a functional chromosome in S. cerevisiae. Minor growth defect "bugs" detected in synXII, caused by deletion of tRNA genes, were rescued by introducing an ectopic copy of a single tRNA gene. The ribosomal gene cluster (rDNA) on synXII was left intact during the assembly process and subsequently replaced by a modified rDNA unit used to regenerate rDNA at three distinct chromosomal locations. The signature sequences within rDNA, which can be used to determine species identity, were swapped to generate a Saccharomyces synXII strain that would be identified as Saccharomyces bayanus by standard DNA barcoding procedures.


Asunto(s)
Cromosomas Artificiales de Levadura/química , ADN Ribosómico/genética , Ingeniería Genética/métodos , Genoma Fúngico , Saccharomyces cerevisiae/genética , Biología Sintética/métodos , Núcleo Celular/genética , Núcleo Celular/ultraestructura , Cromosomas Artificiales de Levadura/genética , Cromosomas Artificiales de Levadura/ultraestructura , Saccharomyces cerevisiae/ultraestructura , Transcriptoma
14.
Science ; 355(6329)2017 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-28280150

RESUMEN

Although the design of the synthetic yeast genome Sc2.0 is highly conservative with respect to gene content, the deletion of several classes of repeated sequences and the introduction of thousands of designer changes may affect genome organization and potentially alter cellular functions. We report here the Hi-C-determined three-dimensional (3D) conformations of Sc2.0 chromosomes. The absence of repeats leads to a smoother contact pattern and more precisely tractable chromosome conformations, and the large-scale genomic organization is globally unaffected by the presence of synthetic chromosome(s). Two exceptions are synIII, which lacks the silent mating-type cassettes, and synXII, specifically when the ribosomal DNA is moved to another chromosome. We also exploit the contact maps to detect rearrangements induced in SCRaMbLE (synthetic chromosome rearrangement and modification by loxP-mediated evolution) strains.


Asunto(s)
Cromosomas Artificiales de Levadura/ultraestructura , Genoma Fúngico , Saccharomyces cerevisiae/genética , Biología Sintética , Núcleo Celular/genética , Núcleo Celular/ultraestructura , Centrómero/ultraestructura , Cromosomas Artificiales de Levadura/química , Cromosomas Artificiales de Levadura/genética , ADN Ribosómico/genética , Conformación de Ácido Nucleico , Secuencias Repetitivas de Ácidos Nucleicos/genética , Eliminación de Secuencia , Telómero/ultraestructura
15.
Science ; 355(6329)2017 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-28280152

RESUMEN

Debugging a genome sequence is imperative for successfully building a synthetic genome. As part of the effort to build a designer eukaryotic genome, yeast synthetic chromosome X (synX), designed as 707,459 base pairs, was synthesized chemically. SynX exhibited good fitness under a wide variety of conditions. A highly efficient mapping strategy called pooled PCRTag mapping (PoPM), which can be generalized to any watermarked synthetic chromosome, was developed to identify genetic alterations that affect cell fitness ("bugs"). A series of bugs were corrected that included a large region bearing complex amplifications, a growth defect mapping to a recoded sequence in FIP1, and a loxPsym site affecting promoter function of ATP2 PoPM is a powerful tool for synthetic yeast genome debugging and an efficient strategy for phenotype-genotype mapping.


Asunto(s)
Cromosomas Artificiales de Levadura/química , Cromosomas Artificiales de Levadura/genética , Genoma Fúngico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Mapeo Físico de Cromosoma/métodos , Saccharomyces cerevisiae/genética , Secuencia de Bases , Duplicación de Gen , Aptitud Genética , Biología Sintética
16.
Science ; 355(6329)2017 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-28280154

RESUMEN

We describe design, rapid assembly, and characterization of synthetic yeast Sc2.0 chromosome VI (synVI). A mitochondrial defect in the synVI strain mapped to synonymous coding changes within PRE4 (YFR050C), encoding an essential proteasome subunit; Sc2.0 coding changes reduced Pre4 protein accumulation by half. Completing Sc2.0 specifies consolidation of 16 synthetic chromosomes into a single strain. We investigated phenotypic, transcriptional, and proteomewide consequences of Sc2.0 chromosome consolidation in poly-synthetic strains. Another "bug" was discovered through proteomic analysis, associated with alteration of the HIS2 transcription start due to transfer RNA deletion and loxPsym site insertion. Despite extensive genetic alterations across 6% of the genome, no major global changes were detected in the poly-synthetic strain "omics" analyses. This work sets the stage for completion of a designer, synthetic eukaryotic genome.


Asunto(s)
Cromosomas Artificiales de Levadura/química , Cromosomas Artificiales de Levadura/genética , Saccharomyces cerevisiae/genética , Biología Sintética/métodos , Células Artificiales/metabolismo , Mapeo Físico de Cromosoma , Complejo de la Endopetidasa Proteasomal/genética , Proteómica , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética
17.
Science ; 355(6329)2017 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-28280153

RESUMEN

Here, we report the successful design, construction, and characterization of a 770-kilobase synthetic yeast chromosome II (synII). Our study incorporates characterization at multiple levels-including phenomics, transcriptomics, proteomics, chromosome segregation, and replication analysis-to provide a thorough and comprehensive analysis of a synthetic chromosome. Our Trans-Omics analyses reveal a modest but potentially relevant pervasive up-regulation of translational machinery observed in synII, mainly caused by the deletion of 13 transfer RNAs. By both complementation assays and SCRaMbLE (synthetic chromosome rearrangement and modification by loxP-mediated evolution), we targeted and debugged the origin of a growth defect at 37°C in glycerol medium, which is related to misregulation of the high-osmolarity glycerol response. Despite the subtle differences, the synII strain shows highly consistent biological processes comparable to the native strain.


Asunto(s)
Cromosomas Artificiales de Levadura/fisiología , Genoma Fúngico , Saccharomyces cerevisiae/genética , Segregación Cromosómica , Cromosomas Artificiales de Levadura/química , Cromosomas Artificiales de Levadura/genética , Medios de Cultivo/química , Replicación del ADN , Glicerol , Proteómica , Saccharomyces cerevisiae/crecimiento & desarrollo , Análisis de Secuencia de ADN , Biología Sintética , Transcriptoma
18.
ACS Synth Biol ; 5(9): 920-2, 2016 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-27633830

RESUMEN

The Sc2.0 project is perhaps the largest synthetic biology project in the public domain, and ultimately aims to construct a new version of the humble brewer's yeast, Saccharomyces cerevisiae. Each year, the Sc2.0 consortium gather to discuss progress in this ambitious project and highlight new developments at the forefront of synthetic genome engineering. This viewpoint summarizes some of the key moments of the 2016 conference, including updates on the Sc2.0 project itself, mammalian synthetic biology, DNA assembly automation, HGP-Write and a panel discussion on the social and ethical perspectives of synthetic biology.


Asunto(s)
Genoma Fúngico/genética , Saccharomyces cerevisiae/genética , Animales , ADN/genética , Ingeniería Genética/métodos , Humanos , Biología Sintética/métodos
19.
FASEB J ; 23(6): 1869-79, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19190082

RESUMEN

Sexual dimorphisms are typically attributed to the hormonal differences arising once sex differentiation has occurred. However, in some sexually dimorphic diseases that differ in frequency but not severity, the differences cannot be logically connected to the sex hormones. Therefore, we asked whether any aspect of sexual dimorphism could be attributed to chromosomal rather than hormonal differences. Cells taken from mice at d 10.5 postconception (PC) before sexual differentiation, at d 17.5 PC after the first embryonic assertion of sexual hormones, and at postnatal day 17 (puberty) were cultured and exposed to 400 microM ethanol or 20 microM camptothecin or to infection with influenza A virus (multiplicity of infection of 5). The results showed that untreated male and female cells of the same age grew at similar rates and manifested similar morphology. However, they responded differently to the applied stressors, even before the production of fetal sex hormones. Furthermore, microarray and qPCR analyses of the whole 10.5 PC embryos also revealed differences in gene expression between male and female tissues. Likewise, the exposure of cells isolated from fetuses and adolescent mice to the stressors and/or sex hormones yielded expression patterns that reflected chromosomal sex, with ethanol feminizing male cells and masculinizing female cells. We conclude that cells differ innately according to sex irrespective of their history of exposure to sex hormones. These differences may have consequences in the course of sexually dimorphic diseases and their therapy.


Asunto(s)
Muerte Celular/fisiología , Embrión de Mamíferos , Expresión Génica , Caracteres Sexuales , Animales , Células Cultivadas , Fragmentación del ADN , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Estrógenos/metabolismo , Etanol/metabolismo , Femenino , Masculino , Ratones , Análisis por Micromatrices , Datos de Secuencia Molecular , Embarazo , Procesos de Determinación del Sexo , Testosterona/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...