Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 20(23)2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31810321

RESUMEN

Epilepsy is a neurological disorder that affects approximately 50 million people worldwide. There is currently no definitive epilepsy cure. However, in recent years, medicinal cannabis has been successfully trialed as an effective treatment for managing epileptic symptoms, but whose mechanisms of action are largely unknown. Lately, there has been a focus on neuroinflammation as an important factor in the pathology of many epileptic disorders. In this literature review, we consider the links that have been identified between epilepsy, neuroinflammation, the endocannabinoid system (ECS), and how cannabinoids may be potent alternatives to more conventional pharmacological therapies. We review the research that demonstrates how the ECS can contribute to neuroinflammation, and could therefore be modulated by cannabinoids to potentially reduce the incidence and severity of seizures. In particular, the cannabinoid cannabidiol has been reported to have anti-convulsant and anti-inflammatory properties, and it shows promise for epilepsy treatment. There are a multitude of signaling pathways that involve endocannabinoids, eicosanoids, and associated receptors by which cannabinoids could potentially exert their therapeutic effects. Further research is needed to better characterize these pathways, and consequently improve the application and regulation of medicinal cannabis.


Asunto(s)
Cannabinoides/uso terapéutico , Endocannabinoides/genética , Epilepsia/tratamiento farmacológico , Convulsiones/tratamiento farmacológico , Cannabinoides/genética , Epilepsia/genética , Humanos , Inflamación/tratamiento farmacológico , Marihuana Medicinal/uso terapéutico , Convulsiones/genética , Convulsiones/terapia , Transducción de Señal/efectos de los fármacos
2.
Epilepsia ; 59(1): e5-e13, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29171013

RESUMEN

Heterozygous de novo variants in the autophagy gene, WDR45, are found in beta-propeller protein-associated neurodegeneration (BPAN). BPAN is characterized by adolescent onset dementia and dystonia; 66% patients have seizures. We asked whether WDR45 was associated with developmental and epileptic encephalopathy (DEE). We performed next generation sequencing of WDR45 in 655 patients with developmental and epileptic encephalopathies. We identified 3/655 patients with DEE plus 4 additional patients with de novo WDR45 pathogenic variants (6 truncations, 1 missense); all were female. Six presented with DEE and 1 with early onset focal seizures and profound regression. Median seizure onset was 12 months, 6 had multiple seizure types, and 5/7 had focal seizures. Three patients had magnetic resonance susceptibility-weighted imaging; blooming was noted in the globus pallidi and substantia nigra in the 2 older children aged 4 and 9 years, consistent with iron accumulation. We show that de novo pathogenic variants are associated with a range of developmental and epileptic encephalopathies with profound developmental consequences.


Asunto(s)
Proteínas Portadoras/genética , Discapacidades del Desarrollo/genética , Mutación/genética , Espasmos Infantiles/complicaciones , Espasmos Infantiles/genética , Encéfalo/diagnóstico por imagen , Niño , Preescolar , Discapacidades del Desarrollo/diagnóstico por imagen , Femenino , Humanos , Lactante , Imagen por Resonancia Magnética , Masculino , Espasmos Infantiles/diagnóstico por imagen
3.
Res Aging ; 39(1): 222-248, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28181872

RESUMEN

This article uses data on a sample of retirees drawn from the Health and Retirement Study (HRS) to examine changes in health over the retirement years and to estimate the effects of health changes in retirement on wealth. Using the framework of item response theory, we develop a novel measure of health that makes use of multiple indicators of physical health that are available in the HRS. We find that large negative shocks to the health of male retirees and their spouses are frequent in retirement and that when such shocks do occur, recovery to the preshock level of health is rare. Using a dynamic panel data model, we then estimate short- and long-run effects of changes in health on wealth. While our estimated short-run effects are modest, long-run estimates of the impact of health shocks on wealth are large, ranging from a 12% to 20% reduction in wealth by the 10th year, following a permanent one standard deviation decrease in health.


Asunto(s)
Estado de Salud , Renta , Jubilación/economía , Femenino , Humanos , Acontecimientos que Cambian la Vida , Masculino , Persona de Mediana Edad , Factores Socioeconómicos
4.
Am J Hum Genet ; 98(5): 1001-1010, 2016 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-27108799

RESUMEN

Whole-exome sequencing of 13 individuals with developmental delay commonly accompanied by abnormal muscle tone and seizures identified de novo missense mutations enriched within a sub-region of GNB1, a gene encoding the guanine nucleotide-binding protein subunit beta-1, Gß. These 13 individuals were identified among a base of 5,855 individuals recruited for various undiagnosed genetic disorders. The probability of observing 13 or more de novo mutations by chance among 5,855 individuals is very low (p = 7.1 × 10(-21)), implicating GNB1 as a genome-wide-significant disease-associated gene. The majority of these 13 mutations affect known Gß binding sites, which suggests that a likely disease mechanism is through the disruption of the protein interface required for Gα-Gßγ interaction (resulting in a constitutively active Gßγ) or through the disruption of residues relevant for interaction between Gßγ and certain downstream effectors (resulting in reduced interaction with the effectors). Strikingly, 8 of the 13 individuals recruited here for a neurodevelopmental disorder have a germline de novo GNB1 mutation that overlaps a set of five recurrent somatic tumor mutations for which recent functional studies demonstrated a gain-of-function effect due to constitutive activation of G protein downstream signaling cascades for some of the affected residues.


Asunto(s)
Discapacidades del Desarrollo/etiología , Subunidades beta de la Proteína de Unión al GTP/genética , Mutación de Línea Germinal/genética , Discapacidad Intelectual/etiología , Hipotonía Muscular/etiología , Convulsiones/etiología , Adolescente , Adulto , Niño , Preescolar , Discapacidades del Desarrollo/patología , Exoma/genética , Femenino , Subunidades beta de la Proteína de Unión al GTP/química , Humanos , Lactante , Discapacidad Intelectual/patología , Masculino , Hipotonía Muscular/patología , Fenotipo , Conformación Proteica , Convulsiones/patología , Transducción de Señal , Adulto Joven
7.
Nat Genet ; 45(7): 825-30, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23708187

RESUMEN

Epileptic encephalopathies are a devastating group of epilepsies with poor prognosis, of which the majority are of unknown etiology. We perform targeted massively parallel resequencing of 19 known and 46 candidate genes for epileptic encephalopathy in 500 affected individuals (cases) to identify new genes involved and to investigate the phenotypic spectrum associated with mutations in known genes. Overall, we identified pathogenic mutations in 10% of our cohort. Six of the 46 candidate genes had 1 or more pathogenic variants, collectively accounting for 3% of our cohort. We show that de novo CHD2 and SYNGAP1 mutations are new causes of epileptic encephalopathies, accounting for 1.2% and 1% of cases, respectively. We also expand the phenotypic spectra explained by SCN1A, SCN2A and SCN8A mutations. To our knowledge, this is the largest cohort of cases with epileptic encephalopathies to undergo targeted resequencing. Implementation of this rapid and efficient method will change diagnosis and understanding of the molecular etiologies of these disorders.


Asunto(s)
Análisis Mutacional de ADN/métodos , Proteínas de Unión al ADN/genética , Epilepsia/genética , Mutación , Proteínas Activadoras de ras GTPasa/genética , Adolescente , Adulto , Niño , Preescolar , Estudios de Cohortes , Epilepsia/diagnóstico , Epilepsia/epidemiología , Femenino , Predisposición Genética a la Enfermedad/genética , Humanos , Masculino , Mutación/fisiología , Adulto Joven
8.
Ann Neurol ; 70(6): 974-85, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22190369

RESUMEN

OBJECTIVE: Rare copy number variants (CNVs)--deletions and duplications--have recently been established as important risk factors for both generalized and focal epilepsies. A systematic assessment of the role of CNVs in epileptic encephalopathies, the most devastating and often etiologically obscure group of epilepsies, has not been performed. METHODS: We evaluated 315 patients with epileptic encephalopathies characterized by epilepsy and progressive cognitive impairment for rare CNVs using a high-density, exon-focused, whole-genome oligonucleotide array. RESULTS: We found that 25 of 315 (7.9%) of our patients carried rare CNVs that may contribute to their phenotype, with at least one-half being clearly or likely pathogenic. We identified 2 patients with overlapping deletions at 7q21 and 2 patients with identical duplications of 16p11.2. In our cohort, large deletions were enriched in affected individuals compared to controls, and 4 patients harbored 2 rare CNVs. We screened 2 novel candidate genes found within the rare CNVs in our cohort but found no mutations in our patients with epileptic encephalopathies. We highlight several additional novel candidate genes located in CNV regions. INTERPRETATION: Our data highlight the significance of rare CNVs in the epileptic encephalopathies, and we suggest that CNV analysis should be considered in the genetic evaluation of these patients. Our findings also highlight novel candidate genes for further study.


Asunto(s)
Trastornos del Conocimiento/genética , Variaciones en el Número de Copia de ADN/genética , Epilepsia/genética , Predisposición Genética a la Enfermedad , Canales de Calcio/genética , Cromosomas Humanos Par 7/genética , Trastornos del Conocimiento/complicaciones , Epilepsia/complicaciones , Exones/genética , Femenino , Dosificación de Gen , Perfilación de la Expresión Génica , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Masculino , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Proteínas Serina-Treonina Quinasas/genética
9.
Brain ; 131(Pt 4): 918-27, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18234694

RESUMEN

Epilepsy and Mental Retardation limited to Females (EFMR) which links to Xq22 has been reported in only one family. We aimed to determine if there was a distinctive phenotype that would enhance recognition of this disorder. We ascertained four unrelated families (two Australian, two Israeli) where seizures in females were transmitted through carrier males. Detailed clinical assessment was performed on 58 individuals, using a validated seizure questionnaire, neurological examination and review of EEG and imaging studies. Gene localization was examined using Xq22 microsatellite markers. Twenty-seven affected females had a mean seizure onset of 14 months (range 6-36) typically presenting with convulsions. All had convulsive attacks at some stage, associated with fever in 17 out of 27 (63%). Multiple seizure types occurred including tonic-clonic (26), tonic (4), partial (11), absence (5), atonic (3) and myoclonic (4). Seizures ceased at mean 12 years. Developmental progress varied from normal (7), to always delayed (4) to normal followed by regression (12). Intellect ranged from normal to severe intellectual disability (ID), with 67% of females having ID or being of borderline intellect. Autistic (6), obsessive (9) and aggressive (7) features were prominent. EEGs showed generalized and focal epileptiform abnormalities. Five obligate male carriers had obsessional tendencies. Linkage to Xq22 was confirmed (maximum lod 3.5 at = 0). We conclude that EFMR is a distinctive, under-recognized familial syndrome where girls present with convulsions in infancy, often associated with intellectual impairment and autistic features. The unique inheritance pattern with transmission by males is perplexing. Clinical recognition is straightforward in multiplex families due to the unique inheritance pattern; however, this disorder should be considered in smaller families where females alone have seizures beginning in infancy, particularly in the setting of developmental delay. In single cases, diagnosis will depend on identification of the molecular basis.


Asunto(s)
Epilepsia/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Discapacidad Intelectual/genética , Adolescente , Adulto , Anciano , Niño , Preescolar , Cromosomas Humanos X/genética , Discapacidades del Desarrollo/complicaciones , Discapacidades del Desarrollo/genética , Electroencefalografía , Epilepsia/complicaciones , Femenino , Ligamiento Genético , Heterocigoto , Humanos , Discapacidad Intelectual/complicaciones , Masculino , Trastornos Mentales/complicaciones , Trastornos Mentales/genética , Persona de Mediana Edad , Linaje , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...