Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Magn Reson Med ; 91(3): 1057-1066, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37929608

RESUMEN

PURPOSE: To develop a self-navigated motion compensation strategy for 3D radial MRI that can compensate for continuous head motion by measuring rigid body motion parameters with high temporal resolution from the central k-space acquisition point (self-encoded FID navigator) in each radial spoke. METHODS: A forward model was created from low-resolution calibration data to simulate the effect of relative motion between the coil sensitivity profiles and the underlying object on the self-encoded FID navigator signal. Trajectory deviations were included in the model as low spatial-order field variations. Three volunteers were imaged at 3 T using a modified 3D gradient-echo sequence acquired with a Kooshball trajectory while performing abrupt and continuous head motion. Rigid body-motion parameters were estimated from the central k-space signal of each spoke using a least-squares fitting algorithm. The accuracy of self-navigated motion parameters was assessed relative to an established external tracking system. Quantitative image quality metrics were computed for images with and without retrospective correction using external and self-navigated motion measurements. RESULTS: Self-encoded FID navigators achieved mean absolute errors of 0.69 ± 0.82 mm and 0.73 ± 0.87° relative to external tracking for maximum motion amplitudes of 12 mm and 10°. Retrospective correction of the 3D radial data resulted in substantially improved image quality for both abrupt and continuous motion paradigms, comparable to external tracking results. CONCLUSIONS: Accurate rigid body motion parameters can be rapidly obtained from self-encoded FID navigator signals in 3D radial MRI to continuously correct for head movements. This approach is suitable for robust neuroanatomical imaging in subjects that exhibit patterns of large and frequent motion.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Movimiento (Física) , Artefactos , Encéfalo
2.
Magn Reson Med ; 89(1): 276-285, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36063497

RESUMEN

PURPOSE: Abdominal MRI scans may require breath-holding to prevent image quality degradation, which can be challenging for patients, especially children. In this study, we evaluate whether FID navigators can be used to measure and correct for motion prospectively, in real-time. METHODS: FID navigators were inserted into a 3D radial sequence with stack-of-stars sampling. MRI experiments were conducted on 6 healthy volunteers. A calibration scan was first acquired to create a linear motion model that estimates the kidney displacement due to respiration from the FID navigator signal. This model was then applied to predict and prospectively correct for motion in real time during deep and continuous deep breathing scans. Resultant images acquired with the proposed technique were compared with those acquired without motion correction. Dice scores were calculated between inhale/exhale motion states. Furthermore, images acquired using the proposed technique were compared with images from extra-dimensional golden-angle radial sparse parallel, a retrospective motion state binning technique. RESULTS: Images reconstructed for each motion state show that the kidneys' position could be accurately tracked and corrected with the proposed method. The mean of Dice scores computed between the motion states were improved from 0.93 to 0.96 using the proposed technique. Depiction of the kidneys was improved in the combined images of all motion states. Comparing results of the proposed technique and extra-dimensional golden-angle radial sparse parallel, high-quality images can be reconstructed from a fraction of spokes using the proposed method. CONCLUSION: The proposed technique reduces blurriness and motion artifacts in kidney imaging by prospectively correcting their position both in-plane and through-slice.


Asunto(s)
Artefactos , Imagen por Resonancia Magnética , Niño , Humanos , Estudios Retrospectivos , Estudios Prospectivos , Imagen por Resonancia Magnética/métodos , Movimiento (Física) , Respiración , Riñón/diagnóstico por imagen , Imagenología Tridimensional/métodos , Procesamiento de Imagen Asistido por Computador/métodos
3.
Magn Reson Med ; 88(6): 2548-2563, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36093989

RESUMEN

PURPOSE: To implement a method for real-time field control using rapid FID navigator (FIDnav) measurements and evaluate the efficacy of the proposed approach for mitigating dynamic field perturbations and improving T 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted image quality. METHODS: FIDnavs were embedded in a gradient echo sequence and a subject-specific linear calibration model was generated on the scanner to facilitate rapid shim updates in response to measured FIDnav signals. To confirm the accuracy of FID-navigated field updates, phantom and volunteer scans were performed with online updates of the scanner B0 shim settings. To evaluate improvement in T 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted image quality with real-time shimming, 10 volunteers were scanned at 3T while performing deep-breathing and nose-touching tasks designed to modulate the B0 field. Quantitative image quality metrics were compared with and without FID-navigated field control. An additional volunteer was scanned at 7T to evaluate performance at ultra-high field. RESULTS: Applying measured FIDnav shim updates successfully compensated for applied global and linear field offsets in phantoms and across all volunteers. FID-navigated real-time shimming led to a substantial reduction in field fluctuations and a consequent improvement in T 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted image quality in volunteers performing deep-breathing and nose-touching tasks, with 7.57% ± 6.01% and 8.21% ± 10.90% improvement in peak SNR and structural similarity, respectively. CONCLUSION: FIDnavs facilitate rapid measurement and application of field coefficients for slice-wise B0 shimming. The proposed approach can successfully counteract spatiotemporal field perturbations and substantially improves T 2 * $$ {\mathrm{T}}_2^{\ast } $$ -weighted image quality, which is important for a variety of clinical and research applications, particularly at ultra-high field.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Calibración , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Modelos Lineales , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen
4.
J Neuroimaging ; 32(1): 68-79, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34506677

RESUMEN

BACKGROUND AND PURPOSE: Super-resolutionreconstruction (SRR) can be used to reconstruct 3-dimensional (3D) high-resolution (HR) volume from several 2-dimensional (2D) low-resolution (LR) stacks of MRI slices. The purpose is to compare lengthy 2D T2-weighted HR image acquisition of neonatal subjects with 3D SRR from several LR stacks in terms of image quality for clinical and morphometric assessments. METHODS: LR brain images were acquired from neonatal subjects to reconstruct isotropic 3D HR volumes by using SRR algorithm. Quality assessments were done by an experienced pediatric radiologist using scoring criteria adapted to newborn anatomical landmarks. The Wilcoxon signed-rank test was used to compare scoring results between HR and SRR images. For quantitative assessments, morphology-based segmentation was performed on both HR and SRR images and Dice coefficients between the results were computed. Additionally, simple linear regression was performed to compare the tissue volumes. RESULTS: No statistical difference was found between HR and SRR structural scores using Wilcoxon signed-rank test (p = .63, Z = .48). Regarding segmentation results, R2 values for the volumes of gray matter, white matter, cerebrospinal fluid, basal ganglia, cerebellum, and total brain volume including brain stem ranged between .95 and .99. Dice coefficients between the segmented regions from HR and SRR ranged between .83 ± .04 and .96 ± .01. CONCLUSION: Qualitative and quantitative assessments showed that 3D SRR of several LR images produces images that are of comparable quality to standard 2D HR image acquisition for healthy neonatal imaging without loss of anatomical details with similar edge definition allowing the detection of fine anatomical structures and permitting comparable morphometric measurement.


Asunto(s)
Imagenología Tridimensional , Imagen por Resonancia Magnética , Algoritmos , Encéfalo/diagnóstico por imagen , Niño , Humanos , Imagenología Tridimensional/métodos , Recién Nacido , Imagen por Resonancia Magnética/métodos , Neuroimagen
5.
Magn Reson Med ; 85(6): 3169-3181, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33404086

RESUMEN

PURPOSE: To investigate the ability of free induction decay navigator (FIDnav)-based motion monitoring to predict diagnostic utility and reduce the time and cost associated with acquiring diagnostically useful images in a pediatric patient cohort. METHODS: A study was carried out in 102 pediatric patients (aged 0-18 years) at 3T using a 32-channel head coil array. Subjects were scanned with an FID-navigated MPRAGE sequence and images were graded by two radiologists using a five-point scale to evaluate the impact of motion artifacts on diagnostic image quality. The correlation between image quality and four integrated FIDnav motion metrics was investigated, as well as the sensitivity and specificity of each FIDnav-based metric to detect different levels of motion corruption in the images. Potential time and cost savings were also assessed by retrospectively applying an optimal detection threshold to FIDnav motion scores. RESULTS: A total of 12% of images were rated as non-diagnostic, while a further 12% had compromised diagnostic value due to motion artifacts. FID-navigated metrics exhibited a moderately strong correlation with image grade (Spearman's rho ≥ 0.56). Integrating the cross-correlation between FIDnav signal vectors achieved the highest sensitivity and specificity for detecting non-diagnostic images, yielding total time savings of 7% across all scans. This corresponded to a financial benefit of $2080 in this study. CONCLUSIONS: Our results indicate that integrated motion metrics from FIDnavs embedded in structural MRI are a useful predictor of diagnostic image quality, which translates to substantial time and cost savings when applied to pediatric MRI examinations.


Asunto(s)
Algoritmos , Benchmarking , Adolescente , Artefactos , Encéfalo/diagnóstico por imagen , Niño , Preescolar , Humanos , Lactante , Recién Nacido , Imagen por Resonancia Magnética , Movimiento (Física) , Estudios Retrospectivos
6.
Magn Reson Med ; 85(3): 1294-1307, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32970869

RESUMEN

PURPOSE: To develop a method for slice-wise dynamic distortion correction for EPI using rapid spatiotemporal B0 field measurements from FID navigators (FIDnavs) and to evaluate the efficacy of this new approach relative to an established data-driven technique. METHODS: A low-resolution reference image was used to create a forward model of FIDnav signal changes to enable estimation of spatiotemporal B0 inhomogeneity variations up to second order from measured FIDnavs. Five volunteers were scanned at 3 T using a 64-channel coil with FID-navigated EPI. The accuracy of voxel shift measurements and geometric distortion correction was assessed for experimentally induced magnetic field perturbations. The temporal SNR was evaluated in EPI time-series acquired at rest and with a continuous nose-touching action, before and after image realignment. RESULTS: Field inhomogeneity coefficients and voxel shift maps measured using FIDnavs were in excellent agreement with multi-echo EPI measurements. The FID-navigated distortion correction accurately corrected image geometry in the presence of induced magnetic field perturbations, outperforming the data-driven approach in regions with large field offsets. In functional MRI scans with nose touching, FIDnav-based correction yielded temporal SNR gains of 30% in gray matter. Following image realignment, which accounted for global image shifts, temporal SNR gains of 3% were achieved. CONCLUSIONS: Our proposed application of FIDnavs enables slice-wise dynamic distortion correction with high temporal efficiency. We achieved improved signal stability by leveraging the encoding information from multichannel coils. This approach can be easily adapted to other EPI-based sequences to improve temporal SNR for a variety of clinical and research applications.


Asunto(s)
Imagen Eco-Planar , Procesamiento de Imagen Asistido por Computador , Algoritmos , Artefactos , Encéfalo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética
7.
J Neuroimaging ; 30(3): 276-285, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32374453

RESUMEN

BACKGROUND AND PURPOSE: Geometric distortions resulting from large pose changes reduce the accuracy of motion measurements and interfere with the ability to generate artifact-free information. Our goal is to develop an algorithm and pulse sequence to enable motion-compensated, geometric distortion compensated diffusion-weighted MRI, and to evaluate its efficacy in correcting for the field inhomogeneity and position changes, induced by large and frequent head motions. METHODS: Dual echo planar imaging (EPI) with a blip-reversed phase encoding distortion correction technique was evaluated in five volunteers in two separate experiments and compared with static field map distortion correction. In the first experiment, dual-echo EPI images were acquired in two head positions designed to induce a large field inhomogeneity change. A field map and a distortion-free structural image were acquired at each position to assess the ability of dual-echo EPI to generate reliable field maps and enable geometric distortion correction in both positions. In the second experiment, volunteers were asked to move to multiple random positions during a diffusion scan. Images were reconstructed using the dual-echo correction and a slice-to-volume registration (SVR) registration algorithm. The accuracy of SVR motion estimates was compared to externally measured ground truth motion parameters. RESULTS: Our results show that dual-echo EPI can produce slice-level field maps with comparable quality to field maps generated by the reference gold standard method. We also show that slice-level distortion correction improves the accuracy of SVR algorithms as slices acquired at different orientations have different levels of distortion, which can create errors in the registration process. CONCLUSIONS: Dual-echo acquisitions with blip-reversed phase encoding can be used to generate slice-level distortion-free images, which is critical for motion-robust slice to volume registration. The distortion corrected images not only result in better motion estimates, but they also enable a more accurate final diffusion image reconstruction.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Imagen Eco-Planar/métodos , Algoritmos , Artefactos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Movimiento (Física)
8.
Magn Reson Med ; 83(2): 575-589, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31463976

RESUMEN

PURPOSE: To measure spatiotemporal B0 field changes in real time using FID navigators (FIDnavs) and to demonstrate the efficacy of retrospectively correcting high-resolution T2* -weighted images using a novel FIDnav framework. METHODS: A forward model of the complex FIDnav signals was generated by simulating the effect of changes in the underlying B0 inhomogeneity coefficients, with spatial encoding provided by a multi-channel reference image. Experiments were performed at 3T to assess the accuracy of B0 field estimates from FIDnavs acquired from a 64-channel head coil under different shim settings and in 5 volunteers performing deep-breathing and nose-touching tasks designed to modulate the B0 field. Second-order, in-plane spherical harmonic (SH) inhomogeneity coefficients estimated from FIDnavs were incorporated into an iterative reconstruction to retrospectively correct 2D gradient-echo images acquired in both axial and sagittal planes. RESULTS: Spatiotemporal B0 field changes measured from rapidly acquired FIDnavs were in good agreement with the results of second-order SH fitting to the measured field maps. FIDnav field estimates accounted for a significant proportion of the ΔB0 variance induced by deep breathing (64 ± 21%) and nose touching (67 ± 34%) across all volunteers. Ghosting, blurring, and intensity modulation artifacts in T2* -weighted images, induced by spatiotemporal field changes, were visibly reduced following retrospective correction with FIDnav inhomogeneity coefficients. CONCLUSIONS: Spatially resolved B0 inhomogeneity changes up to second order can be characterized in real time using the proposed approach. Retrospective FIDnav correction substantially improves T2* -weighted image quality in the presence of strong B0 field modulations, with potential for real-time shimming.


Asunto(s)
Brazo/fisiología , Encéfalo/diagnóstico por imagen , Imagen Eco-Planar/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Adulto , Algoritmos , Artefactos , Mapeo Encefálico/métodos , Femenino , Cabeza , Humanos , Imagenología Tridimensional , Masculino , Modelos Estadísticos , Movimiento (Física) , Respiración , Estudios Retrospectivos , Procesamiento de Señales Asistido por Computador
9.
Magn Reson Med ; 83(2): 427-437, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31400036

RESUMEN

PURPOSE: To investigate the feasibility of using an electromagnetic (EM) tracker to estimate rigid body head motion parameters, and using these measurements to retrospectively reduce motion artifacts. THEORY AND METHODS: A clinically used MPRAGE sequence was modified to measure motion using the EM tracking system once per repetition time. A retrospective k-space based motion correction algorithm that corrects for phase ramps (translation in image domain) and rotation of 3D k-space (rotation in image domain) was developed, using the parameters recorded using an EM tracker. The accuracy of the EM tracker for the purpose of motion measurement and correction was tested in phantoms, volunteers, and pediatric patients. RESULTS: Position localization was accurate to the order of 200 microns compared with registration localization in a phantom study. The quality of reconstructed images was assessed by computing the root mean square error, the structural similarity metric and average edge strength. Image quality improved consistently when motion correction was applied in both volunteer scans with deliberate head motion and in pediatric patient scans. In patients, the average edge strength improved significantly with retrospective motion correction, compared with images with no correction applied. CONCLUSIONS: EM tracking was effective in measuring head motion in the MRI scanner with high accuracy, and enabled retrospective reconstruction to improve image quality by reducing motion artifacts.


Asunto(s)
Movimientos de la Cabeza , Cabeza/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Encéfalo , Calibración , Niño , Preescolar , Fenómenos Electromagnéticos , Radiación Electromagnética , Humanos , Imagenología Tridimensional , Imagen por Resonancia Magnética , Fantasmas de Imagen , Estudios Retrospectivos , Piel/patología , Accidente Cerebrovascular/diagnóstico por imagen
10.
Magn Reson Med ; 81(1): 258-274, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30058216

RESUMEN

PURPOSE: To develop a novel framework for rapid, intrinsic head motion measurement in MRI using FID navigators (FIDnavs) from a multichannel head coil array. METHODS: FIDnavs encode substantial rigid-body motion information; however, current implementations require patient-specific training with external tracking data to extract quantitative positional changes. In this work, a forward model of FIDnav signals was calibrated using simulated movement of a reference image within a model of the spatial coil sensitivities. A FIDnav module was inserted into a nonselective 3D FLASH sequence, and rigid-body motion parameters were retrospectively estimated every readout time using nonlinear optimization to solve the inverse problem posed by the measured FIDnavs. This approach was tested in simulated data and in 7 volunteers, scanned at 3T with a 32-channel head coil array, performing a series of directed motion paradigms. RESULTS: FIDnav motion estimates achieved mean absolute errors of 0.34 ± 0.49 mm and 0.52 ± 0.61° across all subjects and scans, relative to ground-truth motion measurements provided by an electromagnetic tracking system. Retrospective correction with FIDnav motion estimates resulted in substantial improvements in quantitative image quality metrics across all scans with intentional head motion. CONCLUSIONS: Quantitative rigid-body motion information can be effectively estimated using the proposed FIDnav-based approach, which represents a practical method for retrospective motion compensation in less cooperative patient populations.


Asunto(s)
Movimientos de la Cabeza , Cabeza/diagnóstico por imagen , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética , Algoritmos , Artefactos , Encéfalo/diagnóstico por imagen , Simulación por Computador , Voluntarios Sanos , Humanos , Aumento de la Imagen/métodos , Procesamiento de Imagen Asistido por Computador , Fantasmas de Imagen , Valores de Referencia , Reproducibilidad de los Resultados
11.
Phys Med Biol ; 62(1): 127-145, 2017 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-27973353

RESUMEN

Physiological fluctuations are expected to be a dominant source of noise in blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI) experiments to assess tumour oxygenation and angiogenesis. This work investigates the impact of various physiological noise regressors: retrospective image correction (RETROICOR), heart rate (HR) and respiratory volume per unit time (RVT), on signal variance and the detection of BOLD contrast in the breast in response to a modulated respiratory stimulus. BOLD MRI was performed at 3 T in ten volunteers at rest and during cycles of oxygen and carbogen gas breathing. RETROICOR was optimized using F-tests to determine which cardiac and respiratory phase terms accounted for a significant amount of signal variance. A nested regression analysis was performed to assess the effect of RETROICOR, HR and RVT on the model fit residuals, temporal signal-to-noise ratio, and BOLD activation parameters. The optimized RETROICOR model accounted for the largest amount of signal variance ([Formula: see text] = 3.3 ± 2.1%) and improved the detection of BOLD activation (P = 0.002). Inclusion of HR and RVT regressors explained additional signal variance, but had a negative impact on activation parameter estimation (P < 0.001). Fluctuations in HR and RVT appeared to be correlated with the stimulus and may contribute to apparent BOLD signal reactivity.


Asunto(s)
Artefactos , Mama/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Oxígeno/sangre , Relación Señal-Ruido , Adulto , Femenino , Frecuencia Cardíaca , Humanos , Masculino , Análisis de Regresión , Respiración , Estudios Retrospectivos , Adulto Joven
12.
J Magn Reson Imaging ; 44(2): 335-45, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26898173

RESUMEN

PURPOSE: To evaluate blood oxygenation level-dependent (BOLD) contrast changes in healthy breast parenchyma and breast carcinoma during administration of vasoactive gas stimuli. MATERIALS AND METHODS: Magnetic resonance imaging (MRI) was performed at 3T in 19 healthy premenopausal female volunteers using a single-shot fast spin echo sequence to acquire dynamic T2 -weighted images. 2% (n = 9) and 5% (n = 10) carbogen gas mixtures were interleaved with either medical air or oxygen in 2-minute blocks, for four complete cycles. A 12-minute medical air breathing period was used to determine background physiological modulation. Pixel-wise correlation analysis was applied to evaluate response to the stimuli in breast parenchyma and these results were compared to the all-air control. The relative BOLD effect size was compared between two groups of volunteers scanned in different phases of the menstrual cycle. The optimal stimulus design was evaluated in five breast cancer patients. RESULTS: Of the four stimulus combinations tested, oxygen vs. 5% carbogen produced a response that was significantly stronger (P < 0.05) than air-only breathing in volunteers. Subjects imaged during the follicular phase of their cycle when estrogen levels typically peak exhibited a significantly smaller BOLD response (P = 0.01). Results in malignant tissue were variable, with three out of five lesions exhibiting a diminished response to the gas stimulus. CONCLUSION: Oxygen vs. 5% carbogen is the most robust stimulus for inducing BOLD contrast, consistent with the opposing vasomotor effects of these two gases. Measurements may be confounded by background physiological fluctuations and menstrual cycle changes. J. Magn. Reson. Imaging 2016;44:335-345.


Asunto(s)
Neoplasias de la Mama/sangre , Neoplasias de la Mama/diagnóstico por imagen , Mama/metabolismo , Imagen por Resonancia Magnética/métodos , Neovascularización Patológica/sangre , Oximetría/métodos , Oxígeno/sangre , Adulto , Anciano , Mama/diagnóstico por imagen , Neoplasias de la Mama/irrigación sanguínea , Femenino , Humanos , Persona de Mediana Edad , Neovascularización Patológica/diagnóstico por imagen , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Sistema Vasomotor/diagnóstico por imagen , Sistema Vasomotor/metabolismo
13.
J Magn Reson Imaging ; 44(3): 739-44, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26892734

RESUMEN

PURPOSE: To evaluate the utility of oxygen challenge and report on temporal changes in blood oxygenation level-dependent (BOLD) contrast in normal liver, hepatocellular carcinoma (HCC) and background fibrosis. MATERIALS AND METHODS: Eleven volunteers (nine male and two female, mean age 33.5, range 27-41 years) and 10 patients (nine male and one female, mean age 68.9, range 56-87 years) with hepatocellular carcinoma on a background of diffuse liver disease were recruited. Imaging was performed on a 3T system using a multiphase, multiecho, fast gradient echo sequence. Oxygen was administered via a Hudson mask after 2 minutes of free-breathing. Paired t-tests were performed to determine if the mean pre- and post-O2 differences were statistically significant. RESULTS: In patients with liver fibrosis (n = 8) the change in T2* following O2 administration was elevated (0.88 ± 0.582 msec, range 0.03-1.69 msec) and the difference was significant (P = 0.004). The magnitude of the BOLD response in patients with HCC (n = 10) was larger, however the response was more variable (1.07 ± 1.458 msec, range -0.93-3.26 msec), and the difference was borderline significant (P = 0.046). The BOLD response in the volunteer cohort was not significant (P = 0.121, 0.59 ± 1.162 msec, range -0.81-2.44 msec). CONCLUSION: This work demonstrates that the BOLD response following oxygen challenge within cirrhotic liver is consistent with a breakdown in vascular autoregulatory mechanisms. Similarly, the elevated BOLD response within HCC is consistent with the abnormal capillary vasculature within tumors and the arterialization of the blood supply. Our results suggest that oxygen challenge may prove a viable BOLD contrast mechanism in the liver. J. Magn. Reson. Imaging 2016;44:739-744.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Cirrosis Hepática/metabolismo , Imagen por Resonancia Magnética/métodos , Oxígeno/metabolismo , Circulación Renal , Hipoxia Tumoral , Adulto , Anciano , Anciano de 80 o más Años , Velocidad del Flujo Sanguíneo , Carcinoma Hepatocelular/complicaciones , Carcinoma Hepatocelular/diagnóstico por imagen , Femenino , Humanos , Cirrosis Hepática/diagnóstico por imagen , Masculino , Tasa de Depuración Metabólica , Persona de Mediana Edad , Consumo de Oxígeno , Factores de Tiempo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA