Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Energy Fuels ; 38(11): 9827-9835, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38863686

RESUMEN

A crucial aspect of adding an economical and environmental dimension to the upgrading of bio-oils is to develop catalysts with enhanced and prolonged activity. In the present study, the effect of doping δ-alumina (Al2O3) with oxides of cerium (Ce) and lanthanum (La) before thermal treatment was investigated. The performance of such an Al2O3-supported nickel-molybdenum (Ni-Mo) catalyst was evaluated by studying the selectivity for the direct hydrodeoxygenation (HDO) of vanillin to cresol under continuous-flow conditions. In addition, the effect of adding H2S during catalyst activation and/or performance tests was also evaluated. Overall, enhanced performance of the doped NiMo catalyst in the HDO process has been demonstrated and an increased selectivity for cresol via direct HDO observed. The advantage of adding La and Ce is supported by the characterization results, where less sintering and enhanced pore diameter of the doped Al2O3 were observed after thermally inducing the transformation from the δ to θ phases. The improved characteristics and prolonged activity of the doped Al2O3 were also deduced by the lower acidity of the catalyst, which resulted in reduced coke formation during the HDO process.

2.
Nano Lett ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38912704

RESUMEN

We demonstrate experimentally nonequilibrium transport in unipolar quasi-1D hot electron devices reaching the ballistic limit at room temperature. The devices are realized with heterostructure engineering in nanowires to obtain dopant- and dislocation-free 1D-epitaxy and flexible bandgap engineering. We show experimentally the control of hot electron injection with a graded conduction band profile and the subsequent filtering of hot and relaxed electrons with rectangular energy barriers. The number of electrons passing the barrier depends exponentially on the transport length with a mean-free path of 200-260 nm, and the electrons reach the ballistic transport regime for the shortest devices with 70% of the electrons flying freely through the base electrode and the barrier reflections limiting the transport to the collector.

3.
J Biotechnol ; 385: 23-29, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38408644

RESUMEN

The recently identified novel Holliday junction-resolving enzyme, termed Hjc_15-6, activity investigation results imply DNA cleavage by Hjc_15-6 in a manner that potentially enhances the molecular self-assembly that may be exploited for creating DNA-networks and nanostructures. The study also demonstrates Pwo DNA polymerase acting in combination with Hjc_15-6 capability to produce large amounts of DNA that transforms into large DNA-network structures even without DNA template and primers. Furthermore, it is demonstrated that Hjc_15-6 prefers Holliday junction oligonucleotides as compared to Y-shaped oligonucleotides as well as efficiently cleaves typical branched products from isothermal DNA amplification of both linear and circular DNA templates amplified by phi29-like DNA polymerase. The assembly of large DNA network structures was observed in real time, by transmission electron microscopy, on negative stained grids that were freshly prepared, and also on the same grids after incubation for 4 days under constant cooling. Hence, Hjc_15-6 is a promising molecular tool for efficient production of various DNA origamis that may be implemented for a wide range of applications such as within medical biomaterials, catalytic materials, molecular devices and biosensors.


Asunto(s)
ADN Cruciforme , Resolvasas de Unión Holliday , ADN Cruciforme/genética , Resolvasas de Unión Holliday/química , Resolvasas de Unión Holliday/genética , Resolvasas de Unión Holliday/metabolismo , Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , ADN/genética , Oligonucleótidos , Digestión , Conformación de Ácido Nucleico
4.
J Am Chem Soc ; 144(46): 21016-21021, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36374186

RESUMEN

The prediction, identification, and characterization of phases away from equilibrium conditions remain difficult challenges for material science. Herein, we demonstrate how systems whose phase diagrams contain deeply incising eutectics can offer opportunities to address these challenges. We report the synthesis of a new compound in the Au-Si system, a textbook example of a system with a deep eutectic. Au4Si crystallizes in a complex √18×√2×1 superstructure of the PtHg4 type, based on the distortion of vertex-sharing Si@Au8 cubes into bisdisphenoids. Au4Si decomposes upon heating and at room temperature even in high vacuum, highlighting its metastability. Electronic structure analysis reveals a pseudogap at the Fermi energy, which is enhanced by the superstructure through the relief of Au-Au antibonding interactions. The pseudogap is associated with a Zintl-type bonding scheme, which can be extended to the locally ordered liquid. These results highlight the potential for metastable phases to form in deep eutectics that preserve the local structures of the liquid.

5.
Microsc Microanal ; : 1-9, 2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35644630

RESUMEN

The world of environmental microscopy provides the possibility to study and analyze transformations and reactions during realistic conditions to understand the processes better. We report on the design and development of a metal-organic chemical vapor deposition (MOCVD) system integrated with an environmental transmission electron microscope intended for real-time investigations of crystal growth. We demonstrate methods for achieving a wide range of precisely controlled concentrations of precursor gas at the sample, as well as for calibrating the sample partial pressure using the pressure measured elsewhere in the microscope column. The influences of elevated temperature and reactive gas within the pole-piece gap are evaluated with respect to imaging and spectroscopy. We show that X-ray energy-dispersive spectroscopy can be strongly affected by temperatures beyond 500$^{\circ }$C, while the spatial resolution is largely unaffected by heat and microscope pressure for the relevant conditions. Finally, the influence of the electron beam on the investigated processes is discussed. With this work, we aim to provide crucial input in the development of advanced in situ electron microscopy systems for studies of complex reactions in real time under realistic conditions, for instance as used during formation of semiconductor crystals.

6.
Nanotechnology ; 33(37)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35667366

RESUMEN

Nanowire growth enables creation of embedded heterostructures, where one material is completely surrounded by another. Through materials-selective post-growth oxidation it is also possible to combine amorphous oxides and crystalline, e.g. III-V materials. Such oxide-embedded structures pose a challenge for compositional characterization through transmission electron microscopy since the materials will overlap in projection. Furthermore, materials electrically isolated by an embedding oxide are more sensitive to electron beam-induced alterations. Methods that can directly isolate the embedded material, preferably at reduced electron doses, will be required in this situation. Here, we analyse the performance of two such techniques-local lattice parameter measurements from high resolution micrographs and bulk plasmon energy measurements from electron energy loss spectra-by applying them to analyse InP-AlInP segments embedded in amorphous aluminium oxide. We demonstrate the complementarity of the two methods, which show an overall excellent agreement. However, in regions with residual strain, which we analyse through molecular dynamics simulations, the two techniques diverge from the true value in opposite directions.

7.
ChemSusChem ; 15(8): e202200085, 2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35263025

RESUMEN

To enable the large-scale use of hydrogen fuel cells for mobility applications, convenient methods for on-board hydrogen storage and release are required. A promising approach is liquid organic hydrogen carriers (LOHCs), since these are safe, available on a large scale, and compatible with existing refueling infrastructure. Usually, LOHC dehydrogenation is carried out in batch-type reactors by transition metals and their complexes and suffers from slow H2 release kinetics and/or inability to reach high energy density by weight, owing to low conversion or the need to dilute the reaction mixture. In this study, a continuous flow reactor is used in combination with a heterogenized iridium pincer complex, which enables a tremendous increase in LOHC dehydrogenation rates. Thus, dehydrogenation of isopropanol is performed in a regime that, in terms of gravimetric energy density, hydrogen generation rate, and precious metal content, is potentially compatible with applications in a fuel-cell powered car.

8.
J Phys Chem Lett ; 12(31): 7590-7595, 2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34347497

RESUMEN

The nanowire geometry is favorable for the growth of ternary semiconductor materials, because the composition and properties can be tuned freely without substrate lattice matching. To achieve precise control of the composition in ternary semiconductor nanowires, a deeper understanding of the growth is required. One unknown aspect of seeded nanowire growth is how the composition of the catalyst nanoparticle affects the resulting composition of the growing nanowire. We report the first in situ measurements of the nanoparticle and InxGa1-xAs nanowire compositional relationship using an environmental transmission electron microscopy setup. The compositions were measured and correlated during growth, via X-ray energy dispersive spectroscopy. Contrary to predictions from thermodynamic models, the experimental results do not show a miscibility gap. Therefore, we construct a kinetic model that better predicts the compositional trends by suppressing the miscibility gap. The findings imply that compositional control of InxGa1-xAs nanowires is possible across the entire compositional range.

9.
Nanotechnology ; 32(2): 025605, 2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-32987376

RESUMEN

Cost- and resource-efficient growth is necessary for many applications of semiconductor nanowires. We here present the design, operational details and theory behind Aerotaxy, a scalable alternative technology for producing quality crystalline nanowires at a remarkably high growth rate and throughput. Using size-controlled Au seed particles and organometallic precursors, Aerotaxy can produce nanowires with perfect crystallinity and controllable dimensions, and the method is suitable to meet industrial production requirements. In this report, we explain why Aerotaxy is an efficient method for fabricating semiconductor nanowires and explain the technical aspects of our custom-built Aerotaxy system. Investigations using SEM (scanning electron microscope), TEM (transmission electron microscope) and other characterization methods are used to support the claim that Aerotaxy is indeed a scalable method capable of producing nanowires with reproducible properties. We have investigated both binary and ternary III-V semiconductor material systems like GaAs and GaAsP. In addition, common aspects of Aerotaxy nanowires deduced from experimental observations are used to validate the Aerotaxy growth model, based on a computational flow dynamics (CFD) approach. We compare the experimental results with the model behaviour to better understand Aerotaxy growth.

10.
Small ; 16(30): e1907364, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32578387

RESUMEN

III-nitrides are considered the material of choice for light-emitting diodes (LEDs) and lasers in the visible to ultraviolet spectral range. The development is hampered by lattice and thermal mismatch between the nitride layers and the growth substrate leading to high dislocation densities. In order to overcome the issue, efforts have gone into selected area growth of nanowires (NWs), using their small footprint in the substrate to grow virtually dislocation-free material. Their geometry is defined by six tall side-facets and a pointed tip which limits the design of optoelectronic devices. Growth of dislocation-free and atomically smooth 3D hexagonal GaN micro-prisms with a flat, micrometer-sized top-surface is presented. These self-forming structures are suitable for optical devices such as low-loss optical cavities for high-efficiency LEDs. The structures are made by annealing GaN NWs with a thick radial shell, reforming them into hexagonal flat-top prisms with six equivalents either m- or s-facets depending on the initial heights of the top pyramid and m-facets of the NWs. This shape is kinetically controlled and the reformation can be explained with a phenomenological model based on Wulff construction that have been developed. It is expected that the results will inspire further research into micron-sized III-nitride-based devices.

11.
Nanotechnology ; 31(36): 364005, 2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32454471

RESUMEN

Energy dispersive x-ray spectroscopy in a transmission electron microscope is often the first method employed to characterize the composition of nanowires. Ideally, it should be accurate and sensitive down to fractions of an atomic percent, and quantification results are often reported as such. However, one can often get substantial errors in accuracy even though the precision is high: for nanowires it is common for the quantified V/III atomic ratios to differ noticeably from 1. Here we analyse the origin of this systematic error in accuracy for quantification of the composition of III-V nanowires. By varying the electron illumination direction, we find electron channelling to be the primary cause, being responsible for errors in quantified V/III atomic ratio of 50%. Knowing the source of the systematic errors is required for applying appropriate corrections. Lastly, we show how channelling effects can provide information on the crystallographic position of dopants.

12.
ACS Appl Mater Interfaces ; 12(15): 17845-17851, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32207292

RESUMEN

In this work, arrays of predominantly relaxed InGaN platelets with indium contents of up to 18%, free from dislocations and offering a smooth top c-plane, are presented. The InGaN platelets are grown by metal-organic vapor phase epitaxy on a dome-like InGaN surface formed by chemical mechanical polishing of InGaN pyramids defined by 6 equivalent {101̅1} planes. The dome-like surface is flattened during growth, through the formation of bunched steps, which are terminated when reaching the inclined {101̅1} planes. The continued growth takes place on the flattened top c-plane with single bilayer surface steps initiated at the six corners between the c-plane and the inclined {101̅1} planes, leading to the formation of high-quality InGaN layers. The top c-plane of the as-formed InGaN platelets can be used as a high-quality template for red micro light-emitting diodes.

13.
Environ Technol ; 41(23): 3043-3054, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30892147

RESUMEN

In this study, we developed a nanoparticle-based mesoporous composite that consisted of silicate-titanate nanotubes (STNTs) supported in hydrogel chitosan beads (STNTs-Ch beads) and was studied for Cd2+ adsorption. By using Fourier-transform infrared spectroscopy, transmission and scanning electron microscopy coupled to an energy-dispersive X-ray spectrometer, we could determine that the hollow STNTs were highly dispersed in the walls of the hollow beads. The dispersion was attributed to the effect of pH when the composite was prepared and we observed a non-interaction between STNTs and chitosan. The adsorption studies of Cd2+ showed that the kinetic rate (k 2) increased 3-fold and that the diffusion rate (K d) increased 2-fold after the embedment. Moreover, the maximum capacity of adsorption of STNTs-Ch beads was 2.3 times higher than that of STNTs alone. The treatment of a synthetic Cd2+ solution and a real leachate in continuous mode showed two phases in which it was observed higher removed fractions of transition metal ions (Cd2+, Co2+, Ni2+, Zn2+ and Cu2+) and the post-transition metal ion Pb2+, in comparison to the removed fractions of alkali and alkali-earth metal ions (Ca2+, K+, Mg2+). The composite was successfully reused four times when adsorbing Cd2+, saving three times the needed amounts of TiO2, SiO2 and chitosan for the production of the material. This composite was produced in a simple way and shows the potential for wastewater treatment.


Asunto(s)
Quitosano , Nanotubos , Contaminantes Químicos del Agua , Adsorción , Cadmio , Hidrogeles , Concentración de Iones de Hidrógeno , Cinética , Silicatos , Dióxido de Silicio
14.
Nat Commun ; 10(1): 4577, 2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31594930

RESUMEN

Semiconductor nanowires offer the opportunity to incorporate novel structures and functionality into electronic and optoelectronic devices. A clear understanding of the nanowire growth mechanism is essential for well-controlled growth of structures with desired properties, but the understanding is currently limited by a lack of empirical measurements of important parameters during growth, such as catalyst particle composition. However, this is difficult to accurately determine by investigating post-growth. We report direct in situ measurement of the catalyst composition during nanowire growth for the first time. We study Au-seeded GaAs nanowires inside an electron microscope as they grow and measure the catalyst composition using X-ray energy dispersive spectroscopy. The Ga content in the catalyst during growth increases with both temperature and Ga precursor flux.

15.
Nano Lett ; 19(6): 3498-3504, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31039317

RESUMEN

Particle-assisted III-V semiconductor nanowire growth and applications thereof have been studied extensively. However, the stability of nanowires in contact with the particle and the particle chemical composition as a function of temperature remain largely unknown. In this work, we use in situ transmission electron microscopy to investigate the interface between a Au-Ga particle and the top facet of an ⟨1̅1̅1̅⟩-oriented GaAs nanowire grown via the vapor-liquid-solid process. We observed a thermally activated bilayer-by-bilayer removal of the GaAs facet in contact with the liquid particle during annealing between 300 and 420 °C in vacuum. Interestingly, the GaAs-removal rates initially depend on the thermal history of the sample and are time-invariant at later times. In situ X-ray energy dispersive spectroscopy was also used to determine that the Ga content in the particle at any given temperature remains constant over extended periods of time and increases with increasing temperature from 300 to 400 °C. We attribute the observed phenomena to droplet-assisted decomposition of GaAs at a rate that is controlled by the amount of Ga in the droplet. We suggest that the observed transients in removal rates are a direct consequence of time-dependent changes in the Ga content. Our results provide new insights into the role of droplet composition on the thermal stability of GaAs nanowires and complement the existing knowledge on the factors influencing nanowire growth. Moreover, understanding the nanowire stability and decomposition is important for improving processing protocols for the successful fabrication and sustained operation of nanowire-based devices.

16.
Nano Lett ; 19(5): 2832-2839, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-30938533

RESUMEN

In this work, we present a method to synthesize arrays of hexagonal InGaN submicrometer platelets with a top c-plane area having an extension of a few hundred nanometers by selective area metal-organic vapor-phase epitaxy. The InGaN platelets were made by in situ annealing of InGaN pyramids, whereby InGaN from the pyramid apex was thermally etched away, leaving a c-plane surface, while the inclined {101̅1} planes of the pyramids were intact. The as-formed c-planes, which are rough with islands of a few tens of nanometers, can be flattened with InGaN regrowth, showing single bilayer steps and high-quality optical properties (full width at half-maximum of photoluminescence at room temperature: 107 meV for In0.09Ga0.91N and 151 meV for In0.18Ga0.82N). Such platelets offer surfaces having relaxed lattice constants, thus enabling shifting the quantum well emission from blue (as when grown on GaN) to green and red. For single InGaN quantum wells grown on the c-plane of such InGaN platelets, a sharp interface between the quantum well and the barriers was observed. The emission energy from the quantum well, grown under the same conditions, was shifted from 2.17 eV on In0.09Ga0.91N platelets to 1.95 eV on In0.18Ga0.82N platelets as a result of a thicker quantum well and a reduced indium pulling effect on In0.18Ga0.82N platelets. On the basis of this method, prototype light-emitting diodes were demonstrated with green emission on In0.09Ga0.91N platelets and red emission on In0.18Ga0.82N platelets.

17.
Nanoscale Adv ; 1(12): 4764-4771, 2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36133116

RESUMEN

Using a micro-focused high-energy X-ray beam, we have performed in situ time-resolved depth profiling during the electrochemical deposition of Sn into an ordered porous anodic alumina template. Combined with micro-diffraction we are able to follow the variation of the structure at the atomic scale as a function of depth and time. We show that Sn initially deposits at the bottom of the pores, and forms metallic nanopillars with a preferred [100] orientation and a relatively low mosaicity. The lattice strain is found to differ from previous ex situ measurements where the Sn had been removed from the porous support. The dendritic nature of the pore bottom affects the Sn growth mode and results in a variation of Sn grain size, strain and mosaicity. Such atomic scale information of nano-templated materials during electrodeposition may improve the future fabrication of devices.

18.
Small ; : e1801285, 2018 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-30003665

RESUMEN

For the purpose of functionalizing III-V semiconductor nanowires using n-doping, Sn-doped GaAs zincblende nanowires are produced, using the growth method of Aerotaxy. The growth conditions used are such that Ga droplets, formed on the nanowire surface, increase in number and concentrations when the Sn-precursor concentration is increased. Droplet-covered wires grown with varying Sn concentrations are analyzed by transmission electron microscopy and electron tomography, which together establish the positioning of the droplets to be preferentially on {-111}B facets. These facets have the same polarity as the main wire growth direction, [-1-1-1]B. This means that the generated Ga particles can form nucleation sites for possible nanowire branch growth. The concept of azimuthal mapping is introduced as a useful tool for nanowire surface visualization and evaluation. It is demonstrated here that electron tomography is useful in revealing both the surface and internal morphologies of the nanowires, opening up for applications in the analysis of more structurally complicated systems like radially asymmetrical nanowires. The analysis also gives a further understanding of the limits of the dopants which can be used for Aerotaxy nanowires.

19.
Nano Lett ; 18(1): 144-151, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29257691

RESUMEN

Semiconductors are essential for modern electronic and optoelectronic devices. To further advance the functionality of such devices, the ability to fabricate increasingly complex semiconductor nanostructures is of utmost importance. Nanowires offer excellent opportunities for new device concepts; heterostructures have been grown in either the radial or axial direction of the core nanowire but never along both directions at the same time. This is a consequence of the common use of a foreign metal seed particle with fixed size for nanowire heterostructure growth. In this work, we present for the first time a growth method to control heterostructure growth in both the axial and the radial directions simultaneously while maintaining an untapered self-seeded growth. This is demonstrated for the InAs/InAs1-xPx material system. We show how the dimensions and composition of such axio-radial nanowire heterostructures can be designed including the formation of a "pseudo-superlattice" consisting of five separate InAs1-xPx segments with varying length. The growth of axio-radial nanowire heterostructures offers an exciting platform for novel nanowire structures applicable for fundamental studies as well as nanowire devices. The growth concept for axio-radial nanowire heterostructures is expected to be fully compatible with Si substrates.

20.
Nano Lett ; 17(10): 6006-6010, 2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-28873310

RESUMEN

III-V compound semiconductors offer a path to continue Moore's law due to their excellent electron transport properties. One major challenge, integrating III-V's on Si, can be addressed by using vapor-liquid-solid grown vertical nanowires. InAs is an attractive material due to its superior mobility, although InAs metal-oxide-semiconductor field-effect transistors (MOSFETs) typically suffer from band-to-band tunneling caused by its narrow band gap, which increases the off-current and therefore the power consumption. In this work, we present vertical heterostructure InAs/InGaAs nanowire MOSFETs with low off-currents provided by the wider band gap material on the drain side suppressing band-to-band tunneling. We demonstrate vertical III-V MOSFETs achieving off-current below 1 nA/µm while still maintaining on-performance comparable to InAs MOSFETs; therefore, this approach opens a path to address not only high-performance applications but also Internet-of-Things applications that require low off-state current levels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA