Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mov Ecol ; 12(1): 8, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38263096

RESUMEN

BACKGROUND: Improved understanding of wildlife population connectivity among protected area networks can support effective planning for the persistence of wildlife populations in the face of land use and climate change. Common approaches to estimating connectivity often rely on small samples of individuals without considering the spatial structure of populations, leading to limited understanding of how individual movement links to demography and population connectivity. Recently developed spatial capture-recapture (SCR) models provide a framework to formally connect inference about individual movement, connectivity, and population density, but few studies have applied this approach to empirical data to support connectivity planning. METHODS: We used mark-recapture data collected from 924 genetic detections of 598 American black bears (Ursus americanus) in 2004 with SCR ecological distance models to simultaneously estimate density, landscape resistance to movement, and population connectivity in Glacier National Park northwest Montana, USA. We estimated density and movement parameters separately for males and females and used model estimates to calculate predicted density-weighted connectivity surfaces. RESULTS: Model results indicated that landscape structure influences black bear density and space use in Glacier. The mean density estimate was 16.08 bears/100 km2 (95% CI 12.52-20.6) for females and 9.27 bears/100 km2 (95% CI 7.70-11.14) for males. Density increased with forest cover for both sexes. For male black bears, density decreased at higher grizzly bear (Ursus arctos) densities. Drainages, valley bottoms, and riparian vegetation decreased estimates of landscape resistance to movement for male and female bears. For males, forest cover also decreased estimated resistance to movement, but a transportation corridor bisecting the study area strongly increased resistance to movement presenting a barrier to connectivity. CONCLUSIONS: Density-weighed connectivity surfaces highlighted areas important for population connectivity that were distinct from areas with high potential connectivity. For black bears in Glacier and surrounding landscapes, consideration of both vegetation and valley topography could inform the placement of underpasses along the transportation corridor in areas characterized by both high population density and potential connectivity. Our study demonstrates that the SCR ecological distance model can provide biologically realistic, spatially explicit predictions to support movement connectivity planning across large landscapes.

2.
Sci Rep ; 13(1): 687, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36639399

RESUMEN

Human presence exerts complex effects on the ecology of species, which has implications for biodiversity persistence in protected areas experiencing increasing human recreation levels. However, the difficulty of separating the effect on species of human presence from other environmental or disturbance gradients remains a challenge. The cessation of human activity that occurred with COVID-19 restrictions provides a 'natural experiment' to better understand the influence of human presence on wildlife. Here, we use a COVID-19 closure within a heavily visited and highly protected national park (Glacier National Park, MT, USA) to examine how 'low-impact' recreational hiking affects the spatiotemporal ecology of a diverse mammal community. Based on data collected from camera traps when the park was closed and then subsequently open to recreation, we found consistent negative responses to human recreation across most of our assemblage of 24 species, with fewer detections, reduced site use, and decreased daytime activity. Our results suggest that the dual mandates of national parks and protected areas to conserve biodiversity and promote recreation have potential to be in conflict, even for presumably innocuous recreational activities. There is an urgent need to understand the fitness consequences of these spatiotemporal changes to inform management decisions in protected areas.


Asunto(s)
Animales Salvajes , COVID-19 , Animales , Humanos , Parques Recreativos , Conservación de los Recursos Naturales , Recreación , COVID-19/epidemiología , Mamíferos
3.
Sci Rep ; 9(1): 16804, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31727927

RESUMEN

Trends in population abundance can be challenging to quantify during range expansion and contraction, when there is spatial variation in trend, or the conservation area is large. We used genetic detection data from natural bear rubbing sites and spatial capture-recapture (SCR) modeling to estimate local density and population growth rates in a grizzly bear population in northwestern Montana, USA. We visited bear rubs to collect hair in 2004, 2009-2012 (3,579-4,802 rubs) and detected 249-355 individual bears each year. We estimated the finite annual population rate of change 2004-2012 was 1.043 (95% CI = 1.017-1.069). Population density shifted from being concentrated in the north in 2004 to a more even distribution across the ecosystem by 2012. Our genetic detection sampling approach coupled with SCR modeling allowed us to estimate spatially variable growth rates of an expanding grizzly bear population and provided insight into how those patterns developed. The ability of SCR to utilize unstructured data and produce spatially explicit maps that indicate where population change is occurring promises to facilitate the monitoring of difficult-to-study species across large spatial areas.


Asunto(s)
Técnicas de Genotipaje/veterinaria , Cabello/química , Ursidae/crecimiento & desarrollo , Animales , Conservación de los Recursos Naturales , Ecosistema , Montana , Densidad de Población , Análisis Espacial , Ursidae/clasificación , Ursidae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...