Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
Front Immunol ; 15: 1396827, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38855102

RESUMEN

Glucocorticoids, which have long served as fundamental therapeutics for diverse inflammatory conditions, are still widely used, despite associated side effects limiting their long-term use. Among their key mediators is glucocorticoid-induced leucine zipper (GILZ), recognized for its anti-inflammatory and immunosuppressive properties. Here, we explore the immunomodulatory effects of GILZ in macrophages through transcriptomic analysis and functional assays. Bulk RNA sequencing of GILZ knockout and GILZ-overexpressing macrophages revealed significant alterations in gene expression profiles, particularly impacting pathways associated with the inflammatory response, phagocytosis, cell death, mitochondrial function, and extracellular structure organization activity. GILZ-overexpression enhances phagocytic and antibacterial activity against Salmonella typhimurium and Escherichia coli, potentially mediated by increased nitric oxide production. In addition, GILZ protects macrophages from pyroptotic cell death, as indicated by a reduced production of reactive oxygen species (ROS) in GILZ transgenic macrophages. In contrast, GILZ KO macrophages produced more ROS, suggesting a regulatory role of GILZ in ROS-dependent pathways. Additionally, GILZ overexpression leads to decreased mitochondrial respiration and heightened matrix metalloproteinase activity, suggesting its involvement in tissue remodeling processes. These findings underscore the multifaceted role of GILZ in modulating macrophage functions and its potential as a therapeutic target for inflammatory disorders, offering insights into the development of novel therapeutic strategies aimed at optimizing the benefits of glucocorticoid therapy while minimizing adverse effects.


Asunto(s)
Macrófagos , Mitocondrias , Fagocitosis , Piroptosis , Factores de Transcripción , Animales , Mitocondrias/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Inmunomodulación , Especies Reactivas de Oxígeno/metabolismo , Ratones Noqueados , Glucocorticoides/farmacología , Ratones Endogámicos C57BL , Salmonella typhimurium/inmunología , Escherichia coli/inmunología
2.
Bioinformatics ; 40(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38565260

RESUMEN

MOTIVATION: Automated chromatin segmentation based on ChIP-seq (chromatin immunoprecipitation followed by sequencing) data reveals insights into the epigenetic regulation of chromatin accessibility. Existing segmentation methods are constrained by simplifying modeling assumptions, which may have a negative impact on the segmentation quality. RESULTS: We introduce EpiSegMix, a novel segmentation method based on a hidden Markov model with flexible read count distribution types and state duration modeling, allowing for a more flexible modeling of both histone signals and segment lengths. In a comparison with existing tools, ChromHMM, Segway, and EpiCSeg, we show that EpiSegMix is more predictive of cell biology, such as gene expression. Its flexible framework enables it to fit an accurate probabilistic model, which has the potential to increase the biological interpretability of chromatin states. AVAILABILITY AND IMPLEMENTATION: Source code: https://gitlab.com/rahmannlab/episegmix.


Asunto(s)
Cromatina , Epigénesis Genética , Análisis de Secuencia de ADN/métodos , Histonas/metabolismo , Programas Informáticos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
3.
Lupus Sci Med ; 11(1)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38471723

RESUMEN

OBJECTIVES: In SLE, deregulation of haematopoiesis is characterised by inflammatory priming and myeloid skewing of haematopoietic stem and progenitor cells (HSPCs). We sought to investigate the role of extramedullary haematopoiesis (EMH) as a key player for tissue injury in systemic autoimmune disorders. METHODS: Transcriptomic analysis of bone marrow (BM)-derived HSPCs from patients with SLE and NZBW/F1 lupus-prone mice was performed in combination with DNA methylation profile. Trained immunity (TI) was induced through ß-glucan administration to the NZBW/F1 lupus-prone model. Disease activity was assessed through lupus nephritis (LN) histological grading. Colony-forming unit assay and adoptive cell transfer were used to assess HSPCs functionalities. RESULTS: Transcriptomic analysis shows that splenic HSPCs carry a higher inflammatory potential compared with their BM counterparts. Further induction of TI, through ß-glucan administration, exacerbates splenic EMH, accentuates myeloid skewing and worsens LN. Methylomic analysis of BM-derived HSPCs demonstrates myeloid skewing which is in part driven by epigenetic tinkering. Importantly, transcriptomic analysis of human SLE BM-derived HSPCs demonstrates similar findings to those observed in diseased mice. CONCLUSIONS: These data support a key role of granulocytes derived from primed HSPCs both at medullary and extramedullary sites in the pathogenesis of LN. EMH and TI contribute to SLE by sustaining the systemic inflammatory response and increasing the risk for flare.


Asunto(s)
Lupus Eritematoso Sistémico , Nefritis Lúpica , beta-Glucanos , Humanos , Animales , Ratones , Hematopoyesis , Células Madre Hematopoyéticas
4.
Am J Respir Cell Mol Biol ; 70(3): 203-214, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38051640

RESUMEN

Alveolar type 2 and club cells are part of the stem cell niche of the lung and their differentiation is required for pulmonary homeostasis and tissue regeneration. A disturbed crosstalk between fibroblasts and epithelial cells contributes to the loss of lung structure in chronic lung diseases. Therefore, it is important to understand how fibroblasts and lung epithelial cells interact during regeneration. Here, we analyzed the interaction of fibroblasts and the alveolar epithelium modeled in air-liquid interface cultures. Single-cell transcriptomics showed that cocultivation with fibroblasts leads to increased expression of type 2 markers in pneumocytes, activation of regulons associated with the maintenance of alveolar type 2 cells (e.g., Etv5), and transdifferentiation of club cells toward pneumocytes. This was accompanied by an intensified transepithelial barrier. Vice versa, the activation of NF-κB pathways and the CEBPB regulon and the expression of IL-6 and other differentiation factors (e.g., fibroblast growth factors) were increased in fibroblasts cocultured with epithelial cells. Recombinant IL-6 enhanced epithelial barrier formation. Therefore, in our coculture model, regulatory loops were identified by which lung epithelial cells mediate regeneration and differentiation of the alveolar epithelium in a cooperative manner with the mesenchymal compartment.


Asunto(s)
Células Epiteliales Alveolares , Transcriptoma , Animales , Ratones , Transcriptoma/genética , Interleucina-6 , Células Epiteliales , Fibroblastos
5.
Nat Metab ; 5(11): 2020-2035, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37697056

RESUMEN

Skeletal muscle has an enormous plastic potential to adapt to various external and internal perturbations. Although morphological changes in endurance-trained muscles are well described, the molecular underpinnings of training adaptation are poorly understood. We therefore aimed to elucidate the molecular signature of muscles of trained male mice and unravel the training status-dependent responses to an acute bout of exercise. Our results reveal that, even though at baseline an unexpectedly low number of genes define the trained muscle, training status substantially affects the transcriptional response to an acute challenge, both quantitatively and qualitatively, in part associated with epigenetic modifications. Finally, transiently activated factors such as the peroxisome proliferator-activated receptor-γ coactivator 1α are indispensable for normal training adaptation. Together, these results provide a molecular framework of the temporal and training status-dependent exercise response that underpins muscle plasticity in training.


Asunto(s)
Entrenamiento Aeróbico , Condicionamiento Físico Animal , Humanos , Ratones , Masculino , Animales , Músculo Esquelético/fisiología , Condicionamiento Físico Animal/fisiología
6.
J Am Heart Assoc ; 12(17): e031044, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37609982

RESUMEN

Background Stroke is a leading global cause of human death and disability, with advanced aging associated with elevated incidences of stroke. Despite high mortality and morbidity of stroke, the mechanisms leading to blood-brain barrier dysfunction and development of stroke with age are poorly understood. In the vasculature of brain, endothelial cells (ECs) constitute the core component of the blood-brain barrier and provide a physical barrier composed of tight junctions, adherens junctions, and basement membrane. Methods and Results We show, in mice, the incidents of intracerebral bleeding increases with age. After isolating an enriched population of cerebral ECs from murine brains at 2, 6, 12, 18, and 24 months, we studied age-associated changes in gene expression. The study reveals age-dependent dysregulation of 1388 genes, including many involved in the maintenance of the blood-brain barrier and vascular integrity. We also investigated age-dependent changes on the levels of CpG methylation and accessible chromatin in cerebral ECs. Our study reveals correlations between age-dependent changes in chromatin structure and gene expression, whereas the dynamics of DNA methylation changes are different. Conclusions We find significant age-dependent downregulation of the Aplnr gene along with age-dependent reduction in chromatin accessibility of promoter region of the Aplnr gene in cerebral ECs. Aplnr is associated with positive regulation of vasodilation and is implicated in vascular health. Altogether, our data suggest a potential role of the apelinergic axis involving the ligand apelin and its receptor to be critical in maintenance of the blood-brain barrier and vascular integrity.


Asunto(s)
Células Endoteliales , Accidente Cerebrovascular , Humanos , Animales , Ratones , Receptores de Apelina , Transcriptoma , Hemorragia Cerebral/genética , Cromatina , Epigénesis Genética
7.
Epigenetics Chromatin ; 16(1): 30, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37415213

RESUMEN

Fatty liver disease or the accumulation of fat in the liver, has been reported to affect the global population. This comes with an increased risk for the development of fibrosis, cirrhosis, and hepatocellular carcinoma. Yet, little is known about the effects of a diet containing high fat and alcohol towards epigenetic aging, with respect to changes in transcriptional and epigenomic profiles. In this study, we took up a multi-omics approach and integrated gene expression, methylation signals, and chromatin signals to study the epigenomic effects of a high-fat and alcohol-containing diet on mouse hepatocytes. We identified four relevant gene network clusters that were associated with relevant pathways that promote steatosis. Using a machine learning approach, we predict specific transcription factors that might be responsible to modulate the functionally relevant clusters. Finally, we discover four additional CpG loci and validate aging-related differential CpG methylation. Differential CpG methylation linked to aging showed minimal overlap with altered methylation in steatosis.


Asunto(s)
Epigenómica , Hepatocitos , Ratones , Animales , Hepatocitos/metabolismo , Hígado/metabolismo , Etanol , Epigénesis Genética , Metilación de ADN
8.
Adv Sci (Weinh) ; 10(8): e2207301, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36748276

RESUMEN

In the development of orally inhaled drug products preclinical animal models regularly fail to predict pharmacological as well as toxicological responses in humans. Models based on human cells and tissues are potential alternatives to animal experimentation allowing for the isolation of essential processes of human biology and making them accessible in vitro. Here, the generation of a novel monoclonal cell line "Arlo," derived from the polyclonal human alveolar epithelium lentivirus immortalized cell line hAELVi via single-cell printing, and its characterization as a model for the human alveolar epithelium as well as a building block for future complex in vitro models is described. "Arlo" is systematically compared in vitro to primary human alveolar epithelial cells (hAEpCs) as well as to the polyclonal hAELVi cell line. "Arlo" cells show enhanced barrier properties with high transepithelial electrical resistance (TEER) of ≈3000 Ω cm2 and a potential difference (PD) of ≈30 mV under air-liquid interface (ALI) conditions, that can be modulated. The cells grow in a polarized monolayer and express genes relevant to barrier integrity as well as homeostasis as is observed in hAEpCs. Successful productive infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a proof-of-principle study offers an additional, attractive application of "Arlo" beyond biopharmaceutical experimentation.


Asunto(s)
Células Epiteliales Alveolares , COVID-19 , Animales , Humanos , SARS-CoV-2 , COVID-19/metabolismo , Línea Celular , Permeabilidad
9.
Nat Commun ; 14(1): 1098, 2023 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-36841874

RESUMEN

Inter-organ communication is a major hallmark of health and is often orchestrated by hormones released by the anterior pituitary gland. Pituitary gonadotropes secrete follicle-stimulating hormone (FSH) and luteinizing hormone (LH) to regulate gonadal function and control fertility. Whether FSH and LH also act on organs other than the gonads is debated. Here, we find that gonadotrope depletion in adult female mice triggers profound hypogonadism, obesity, glucose intolerance, fatty liver, and bone loss. The absence of sex steroids precipitates these phenotypes, with the notable exception of fatty liver, which results from ovary-independent actions of FSH. We uncover paracrine FSH action on pituitary corticotropes as a mechanism to restrain the production of corticosterone and prevent hepatic steatosis. Our data demonstrate that functional communication of two distinct hormone-secreting cell populations in the pituitary regulates hepatic lipid metabolism.


Asunto(s)
Hígado Graso , Metabolismo de los Lípidos , Ratones , Femenino , Animales , Hormona Folículo Estimulante/genética , Hormona Folículo Estimulante/metabolismo , Hipófisis/metabolismo , Hormona Luteinizante/metabolismo , Hígado Graso/metabolismo
11.
Biomicrofluidics ; 16(6): 064102, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36506005

RESUMEN

Changes in the DNA methylation landscape are associated with many diseases like cancer. Therefore, DNA methylation analysis is of great interest for molecular diagnostics and can be applied, e.g., for minimally invasive diagnostics in liquid biopsy samples like blood plasma. Sensitive detection of local de novo methylation, which occurs in various cancer types, can be achieved with quantitative HeavyMethyl-PCR using oligonucleotides that block the amplification of unmethylated DNA. A transfer of these quantitative PCRs (qPCRs) into point-of-care (PoC) devices like microfluidic Lab-on-Chip (LoC) cartridges can be challenging as LoC systems show significantly different thermal properties than qPCR cyclers. We demonstrate how an adequate thermal model of the specific LoC system can help us to identify a suitable thermal profile, even for complex HeavyMethyl qPCRs, with reduced experimental effort. Using a simulation-based approach, we demonstrate a proof-of-principle for the successful LoC transfer of colorectal SEPT9/ACTB-qPCR from Epi Procolon® colorectal carcinoma test, by avoidance of oligonucleotide interactions.

12.
Nucleic Acids Res ; 50(20): 11563-11579, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36354002

RESUMEN

Dynamic intron retention (IR) in vertebrate cells is of widespread biological importance. Aberrant IR is associated with numerous human diseases including several cancers. Despite consistent reports demonstrating that intrinsic sequence features can help introns evade splicing, conflicting findings about cell type- or condition-specific IR regulation by trans-regulatory and epigenetic mechanisms demand an unbiased and systematic analysis of IR in a controlled experimental setting. We integrated matched mRNA sequencing (mRNA-Seq), whole-genome bisulfite sequencing (WGBS), nucleosome occupancy methylome sequencing (NOMe-Seq) and chromatin immunoprecipitation sequencing (ChIP-Seq) data from primary human myeloid and lymphoid cells. Using these multi-omics data and machine learning, we trained two complementary models to determine the role of epigenetic factors in the regulation of IR in cells of the innate immune system. We show that increased chromatin accessibility, as revealed by nucleosome-free regions, contributes substantially to the retention of introns in a cell-specific manner. We also confirm that intrinsic characteristics of introns are key for them to evade splicing. This study suggests an important role for chromatin architecture in IR regulation. With an increasing appreciation that pathogenic alterations are linked to RNA processing, our findings may provide useful insights for the development of novel therapeutic approaches that target aberrant splicing.


Asunto(s)
Diferenciación Celular , Cromatina , Intrones , Humanos , Cromatina/genética , Intrones/genética , Nucleosomas/genética , ARN Mensajero
13.
Genome Med ; 14(1): 110, 2022 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-36153599

RESUMEN

BACKGROUND AND AIMS: Treatment with tumor necrosis factor α (TNFα) antagonists in IBD patients suffers from primary non-response rates of up to 40%. Biomarkers for early prediction of therapy success are missing. We investigated the dynamics of gene expression and DNA methylation in blood samples of IBD patients treated with the TNF antagonist infliximab and analyzed the predictive potential regarding therapy outcome. METHODS: We performed a longitudinal, blood-based multi-omics study in two prospective IBD patient cohorts receiving first-time infliximab therapy (discovery: 14 patients, replication: 23 patients). Samples were collected at up to 7 time points (from baseline to 14 weeks after therapy induction). RNA-sequencing and genome-wide DNA methylation data were analyzed and correlated with clinical remission at week 14 as a primary endpoint. RESULTS: We found no consistent ex ante predictive signature across the two cohorts. Longitudinally upregulated transcripts in the non-remitter group comprised TH2- and eosinophil-related genes including ALOX15, FCER1A, and OLIG2. Network construction identified transcript modules that were coherently expressed at baseline and in non-remitting patients but were disrupted at early time points in remitting patients. These modules reflected processes such as interferon signaling, erythropoiesis, and platelet aggregation. DNA methylation analysis identified remission-specific temporal changes, which partially overlapped with transcriptomic signals. Machine learning approaches identified features from differentially expressed genes cis-linked to DNA methylation changes at week 2 as a robust predictor of therapy outcome at week 14, which was validated in a publicly available dataset of 20 infliximab-treated CD patients. CONCLUSIONS: Integrative multi-omics analysis reveals early shifts of gene expression and DNA methylation as predictors for efficient response to anti-TNF treatment. Lack of such signatures might be used to identify patients with IBD unlikely to benefit from TNF antagonists at an early time point.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Inhibidores del Factor de Necrosis Tumoral , Biomarcadores , Humanos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/genética , Infliximab/uso terapéutico , Interferones/uso terapéutico , Estudios Prospectivos , ARN , Factor de Necrosis Tumoral alfa
14.
Cells ; 11(15)2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35892596

RESUMEN

Dimethyl sulfoxide (DMSO) is used to sustain or favor hepatocyte differentiation in vitro. Thus, DMSO is used in the differentiation protocol of the HepaRG cells that present the closest drug-metabolizing enzyme activities to primary human hepatocytes in culture. The aim of our study is to clarify its influence on liver-specific gene expression. For that purpose, we performed a large-scale analysis (gene expression and histone modification) to determine the global role of DMSO exposure during the differentiation process of the HepaRG cells. The addition of DMSO drives the upregulation of genes mainly regulated by PXR and PPARα whereas genes not affected by this addition are regulated by HNF1α, HNF4α, and PPARα. DMSO-differentiated-HepaRG cells show a differential expression for genes regulated by histone acetylation, while differentiated-HepaRG cells without DMSO show gene signatures associated with histone deacetylases. In addition, we observed an interplay between cytoskeleton organization and EMC remodeling with hepatocyte maturation.


Asunto(s)
Dimetilsulfóxido , Epigénesis Genética , Hepatocitos , Dimetilsulfóxido/metabolismo , Dimetilsulfóxido/farmacología , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Factor Nuclear 4 del Hepatocito/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , PPAR alfa/metabolismo
15.
J Hepatol ; 77(5): 1386-1398, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35863491

RESUMEN

BACKGROUND & AIMS: Pluripotent stem cell (PSC)-derived hepatocyte-like cells (HLC) have enormous potential as a replacement for primary hepatocytes in drug screening, toxicology and cell replacement therapy, but their genome-wide expression patterns differ strongly from primary human hepatocytes (PHH). METHODS: We differentiated human induced pluripotent stem cells (hiPSC) via definitive endoderm to HLC and characterized the cells by single-cell and bulk RNA-seq, with complementary epigenetic analyses. We then compared HLC to PHH and publicly available data on human fetal hepatocytes (FH) ex vivo; we performed bioinformatics-guided interventions to improve HLC differentiation via lentiviral transduction of the nuclear receptor FXR and agonist exposure. RESULTS: Single-cell RNA-seq revealed that transcriptomes of individual HLC display a hybrid state, where hepatocyte-associated genes are expressed in concert with genes that are not expressed in PHH - mostly intestinal genes - within the same cell. Bulk-level overrepresentation analysis, as well as regulon analysis at the single-cell level, identified sets of regulatory factors discriminating HLC, FH, and PHH, hinting at a central role for the nuclear receptor FXR in the functional maturation of HLC. Combined FXR expression plus agonist exposure enhanced the expression of hepatocyte-associated genes and increased the ability of bile canalicular secretion as well as lipid droplet formation, thereby increasing HLCs' similarity to PHH. The undesired non-liver gene expression was reproducibly decreased, although only by a moderate degree. CONCLUSION: In contrast to physiological hepatocyte precursor cells and mature hepatocytes, HLC co-express liver and hybrid genes in the same cell. Targeted modification of the FXR gene regulatory network improves their differentiation by suppressing intestinal traits whilst inducing hepatocyte features. LAY SUMMARY: Generation of human hepatocytes from stem cells represents an active research field but its success is hampered by the fact that the stem cell-derived 'hepatocytes' still show major differences to hepatocytes obtained from a liver. Here, we identified an important reason for the difference, specifically that the stem cell-derived 'hepatocyte' represents a hybrid cell with features of hepatocytes and intestinal cells. We show that a specific protein (FXR) suppresses intestinal and induces liver features, thus bringing the stem cell-derived cells closer to hepatocytes derived from human livers.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Diferenciación Celular , Hepatocitos/metabolismo , Humanos , Intestinos
16.
Int J Cancer ; 151(12): 2068-2081, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-35730647

RESUMEN

Colorectal cancer (CRC) is the second leading cause of cancer death worldwide that is attributed to gradual long-term accumulation of both genetic and epigenetic changes. To reduce the mortality rate of CRC and to improve treatment efficacy, it will be important to develop accurate noninvasive diagnostic tests for screening, acute and personalized diagnosis. Epigenetic changes such as DNA methylation play an important role in the development and progression of CRC. Over the last decade, a panel of DNA methylation markers has been reported showing a high accuracy and reproducibility in various semi-invasive or noninvasive biosamples. Research to obtain comprehensive panels of markers allowing a highly sensitive and differentiating diagnosis of CRC is ongoing. Moreover, the epigenetic alterations for cancer therapy, as a precision medicine strategy will increase their therapeutic potential over time. Here, we discuss the current state of DNA methylation-based biomarkers and their impact on CRC diagnosis. We emphasize the need to further identify and stratify methylation-biomarkers and to develop robust and effective detection methods that are applicable for a routine clinical setting of CRC diagnostics particularly at the early stage of the disease.


Asunto(s)
Neoplasias Colorrectales , Metilación de ADN , Humanos , Medicina de Precisión , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/tratamiento farmacológico , Reproducibilidad de los Resultados , Biomarcadores de Tumor/genética , Epigénesis Genética
17.
Cell Rep Methods ; 2(3): 100187, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35475220

RESUMEN

A precise understanding of DNA methylation dynamics is of great importance for a variety of biological processes including cellular reprogramming and differentiation. To date, complex integration of multiple and distinct genome-wide datasets is required to realize this task. We present GwEEP (genome-wide epigenetic efficiency profiling) a versatile approach to infer dynamic efficiencies of DNA modifying enzymes. GwEEP relies on genome-wide hairpin datasets, which are translated by a hidden Markov model into quantitative enzyme efficiencies with reported confidence around the estimates. GwEEP predicts de novo and maintenance methylation efficiencies of Dnmts and furthermore the hydroxylation efficiency of Tets. Its design also allows capturing further oxidation processes given available data. We show that GwEEP predicts accurately the epigenetic changes of ESCs following a Serum-to-2i shift and applied to Tet TKO cells confirms the hypothesized mutual interference between Dnmts and Tets.


Asunto(s)
Proteínas de Unión al ADN , Epigénesis Genética , Proteínas de Unión al ADN/genética , Metilación de ADN/genética , ADN/genética , Diferenciación Celular
18.
Eur J Immunol ; 52(5): 737-752, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35245389

RESUMEN

Resident memory T lymphocytes (TRM ) of epithelial tissues and the Bm protect their host tissue. To what extent these cells are mobilized and contribute to systemic immune reactions is less clear. Here, we show that in secondary immune reactions to the measles-mumps-rubella (MMR) vaccine, CD4+ TRM are mobilized into the blood within 16 to 48 h after immunization in humans. This mobilization of TRM is cognate: TRM recognizing other antigens are not mobilized, unless they cross-react with the vaccine. We also demonstrate through methylome analyses that TRM are mobilized from the Bm. These mobilized cells make significant contribution to the systemic immune reaction, as evidenced by their T-cell receptor Vß clonotypes represented among the newly generated circulating memory T-cells, 14 days after vaccination. Thus, TRM of the Bm confer not only local, but also systemic immune memory.


Asunto(s)
Memoria Inmunológica , Vacunas , Médula Ósea , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Humanos
19.
Clin Epigenetics ; 14(1): 26, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35180887

RESUMEN

BACKGROUND: Promoter methylation of the DNA repair gene O6-methylguanine-DNA methyltransferase (MGMT) is an acknowledged predictive epigenetic marker in glioblastoma multiforme and anaplastic astrocytoma. Patients with methylated CpGs in the MGMT promoter benefit from treatment with alkylating agents, such as temozolomide, and show an improved overall survival and progression-free interval. A precise determination of MGMT promoter methylation is of importance for diagnostic decisions. We experienced that different methods show partially divergent results in a daily routine. For an integrated neuropathological diagnosis of malignant gliomas, we therefore currently apply a combination of methylation-specific PCR assays and pyrosequencing. RESULTS: To better rationalize the variation across assays, we compared these standard techniques and assays to deep bisulfite sequencing results in a cohort of 80 malignant astrocytomas. Our deep analysis covers 49 CpG sites of the expanded MGMT promoter, including exon 1, parts of intron 1 and a region upstream of the transcription start site (TSS). We observed that deep sequencing data are in general in agreement with CpG-specific pyrosequencing, while the most widely used MSP assays published by Esteller et al. (N Engl J Med 343(19):1350-1354, 2000. https://doi.org/10.1056/NEJM200011093431901 ) and Felsberg et al. (Clin Cancer Res 15(21):6683-6693, 2009. https://doi.org/10.1158/1078-0432.CCR-08-2801 ) resulted in partially discordant results in 22 tumors (27.5%). Local deep bisulfite sequencing (LDBS) revealed that CpGs located in exon 1 are suited best to discriminate methylated from unmethylated samples. Based on LDBS data, we propose an optimized MSP primer pair with 83% and 85% concordance to pyrosequencing and LDBS data. A hitherto neglected region upstream of the TSS, with an overall higher methylation compared to exon 1 and intron 1 of MGMT, is also able to discriminate the methylation status. CONCLUSION: Our integrated analysis allows to evaluate and redefine co-methylation domains within the MGMT promoter and to rationalize the practical impact on assays used in daily routine diagnostics.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Metilación de ADN , Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Glioblastoma/diagnóstico , Glioblastoma/genética , Glioblastoma/patología , Humanos , O(6)-Metilguanina-ADN Metiltransferasa/genética , Sulfitos , Proteínas Supresoras de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA