Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochem J ; 443(2): 397-405, 2012 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22242896

RESUMEN

The malaria parasite Plasmodium falciparum is able to synthesize de novo PLP (pyridoxal 5'-phosphate), the active form of vitamin B6. In the present study, we have shown that the de novo synthesized PLP is used by the parasite to detoxify 1O2 (singlet molecular oxygen), a highly destructive reactive oxygen species arising from haemoglobin digestion. The formation of 1O2 and the response of the parasite were monitored by live-cell fluorescence microscopy, by transcription analysis and by determination of PLP levels in the parasite. Pull-down experiments of transgenic parasites overexpressing the vitamin B6-biosynthetic enzymes PfPdx1 and PfPdx2 clearly demonstrated an interaction of the two proteins in vivo which results in an elevated PLP level from 12.5 µM in wild-type parasites to 36.6 µM in the PfPdx1/PfPdx2-overexpressing cells and thus to a higher tolerance towards 1O2. In contrast, by applying the dominant-negative effect on the cellular level using inactive mutants of PfPdx1 and PfPdx2, P. falciparum becomes susceptible to 1O2. Our results demonstrate clearly the crucial role of vitamin B6 biosynthesis in the detoxification of 1O2 in P. falciparum. Besides the known role of PLP as a cofactor of many essential enzymes, this second important task of the vitamin B6 de novo synthesis as antioxidant emphasizes the high potential of this pathway as a target of new anti-malarial drugs.


Asunto(s)
Estrés Oxidativo , Plasmodium falciparum/metabolismo , Vitamina B 6/biosíntesis , Datos de Secuencia Molecular , Transferasas de Grupos Nitrogenados/genética , Transferasas de Grupos Nitrogenados/metabolismo , Perileno/análogos & derivados , Perileno/farmacología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/crecimiento & desarrollo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Regulación hacia Arriba
2.
Arch Pharm (Weinheim) ; 344(11): 755-64, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21932256

RESUMEN

A series of previously unreported α-hydroxy hydrazonates were synthesized and tested for their antimalarial properties. Structure optimization of the antiplasmodially active α-hydroxy hydrazonate III furnished derivatives with strong in-vitro antimalarial activity against 3D7 strains of Plasmodium falciparum with IC(50) values lower than 2.0 µM.


Asunto(s)
Antimaláricos/farmacología , Hidrazonas/farmacología , Plasmodium falciparum/efectos de los fármacos , Antimaláricos/síntesis química , Antimaláricos/química , Hidrazonas/síntesis química , Hidrazonas/química , Concentración 50 Inhibidora , Relación Estructura-Actividad
3.
Cell Microbiol ; 12(5): 677-91, 2010 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-20070315

RESUMEN

As an intracellular proliferating parasite, Plasmodium falciparum exploits the human host to acquire nutrients. However, nutrients such as nucleotides and cofactors are mostly phosphorylated in the host cell cytosol and thus have to be dephosphorylated in order to be taken up by the parasite. Here we report the functional characterization of a unique secreted phosphatase in P. falciparum, which is expressed throughout the developmental stages in the red blood cell. We show that this enzyme, formerly described as anchoring glideosome-associated protein 50 (GAP50), reveals a broad substrate profile with preference for di- and triphosphates at pH 5-7. Bioinformatic studies of the protein sequence identified an N-terminal signal anchor (SA) as well as a C-terminal transmembrane domain. By means of live microscopy of parasites transfected with GFP-fusions of this secreted acid phosphatase (PfSAP), we demonstrate that PfSAP enters the secretory pathway en route to the parasite periphery - mediated by SA - and is subsequently engulfed into the food vacuole. We corroborate this with independent data where acid phosphatase activity is visualized in close proximity to hemozoin. The biochemical as well as the trafficking results support the proposed role of PfSAP in the acquisition of host nutrients by dephosphorylation.


Asunto(s)
Fosfatasa Ácida/metabolismo , Eritrocitos/parasitología , Proteínas de la Membrana/metabolismo , Plasmodium falciparum/enzimología , Plasmodium falciparum/metabolismo , Secuencia de Aminoácidos , Animales , Biología Computacional , Humanos , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Fosfatos/metabolismo , Estructura Terciaria de Proteína , Transporte de Proteínas , Alineación de Secuencia , Especificidad por Sustrato
4.
PLoS One ; 4(11): e7656, 2009 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-19888457

RESUMEN

Vitamin B1 is in its active form thiamine pyrophosphate (TPP), an essential cofactor for several key enzymes in the carbohydrate metabolism. Mammals must salvage this crucial nutrient from their diet in order to complement the deficiency of de novo synthesis. In the human pathogenic bacterium Staphylococcus aureus, two operons were identified which are involved in vitamin B1 metabolism. The first operon encodes for the thiaminase type II (TenA), 4-amino-5-hydroxymethyl-2-methylpyrimidine kinase (ThiD), 5-(2-hydroxyethyl)-4-methylthiazole kinase (ThiM) and thiamine phosphate synthase (ThiE). The second operon encodes a phosphatase, an epimerase and the thiamine pyrophosphokinase (TPK). The open reading frames of the individual operons were cloned, their corresponding proteins were recombinantly expressed and biochemically analysed. The kinetic properties of the enzymes as well as the binding of TPP to the in vitro transcribed RNA of the proposed operons suggest that the vitamin B1 homeostasis in S. aureus is strongly regulated at transcriptional as well as enzymatic levels.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Staphylococcus aureus/metabolismo , Tiamina/metabolismo , Transcripción Genética , Enzimas de Restricción del ADN/metabolismo , Genoma Bacteriano , Hidrolasas/genética , Cinética , Sistemas de Lectura Abierta , Operón , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Racemasas y Epimerasas/genética , Tiamina Pirofosfoquinasa/genética
5.
PLoS One ; 4(2): e4406, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19197387

RESUMEN

The human malaria parasite Plasmodium falciparum is able to synthesize de novo pyridoxal 5-phosphate (PLP), a crucial cofactor, during erythrocytic schizogony. However, the parasite possesses additionally a pyridoxine/pyridoxal kinase (PdxK) to activate B6 vitamers salvaged from the host. We describe a strategy whereby synthetic pyridoxyl-amino acid adducts are channelled into the parasite. Trapped upon phosphorylation by the plasmodial PdxK, these compounds block PLP-dependent enzymes and thus impair the growth of P. falciparum. The novel compound PT3, a cyclic pyridoxyl-tryptophan methyl ester, inhibited the proliferation of Plasmodium very efficiently (IC(50)-value of 14 microM) without harming human cells. The non-cyclic pyridoxyl-tryptophan methyl ester PT5 and the pyridoxyl-histidine methyl ester PHME were at least one order of magnitude less effective or completely ineffective in the case of the latter. Modeling in silico indicates that the phosphorylated forms of PT3 and PT5 fit well into the PLP-binding site of plasmodial ornithine decarboxylase (PfODC), the key enzyme of polyamine synthesis, consistent with the ability to abolish ODC activity in vitro. Furthermore, the antiplasmodial effect of PT3 is directly linked to the capability of Plasmodium to trap this pyridoxyl analog, as shown by an increased sensitivity of parasites overexpressing PfPdxK in their cytosol, as visualized by GFP fluorescence.


Asunto(s)
Antimaláricos/farmacología , Malaria/parasitología , Parásitos/efectos de los fármacos , Parásitos/enzimología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/enzimología , Fosfato de Piridoxal/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Animales , Línea Celular , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Macaca mulatta , Malaria/enzimología , Modelos Moleculares , Ornitina Descarboxilasa/química , Inhibidores de la Ornitina Descarboxilasa , Parásitos/crecimiento & desarrollo , Pruebas de Sensibilidad Parasitaria , Fosforilación/efectos de los fármacos , Plasmodium falciparum/crecimiento & desarrollo , Transporte de Proteínas/efectos de los fármacos , Fosfato de Piridoxal/química , Proteínas Recombinantes de Fusión/metabolismo , Especificidad por Sustrato/efectos de los fármacos
6.
Comp Biochem Physiol B Biochem Mol Biol ; 151(3): 237-45, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18752976

RESUMEN

The present study reports the purification and characterization of GST from cytosolic fraction of Setaria cervi. GST activity was determined in various subcellular fractions of bovine filarial worms S. cervi (Bubalus bubalis Linn.) and was found to be localized mainly in the cytosolic and microsomal fractions. The soluble enzyme from S. cervi was purified to homogeneity using a combination of salt precipitation, centrifugation, cation exchange and GSH-Sepharose affinity chromatography followed by ultrafiltration. SDS-PAGE analysis revealed a single band and activity staining was also detected on PAGE gels. Gel filtration and MALDI-TOF studies revealed that the native enzyme is a homodimer with a subunit molecular mass of 24.6 kDa. Comparison of kinetic properties of the parasitic and mammalian enzymes revealed significant differences between them. The substrate specificity and inhibitor profile of cytosolic GST from S. cervi appeared to be different from GST from mammalian sources.


Asunto(s)
Glutatión Transferasa/química , Setaria (Nematodo)/enzimología , Animales , Bovinos , Citosol/enzimología , Glutatión Transferasa/aislamiento & purificación , Glutatión Transferasa/metabolismo , Microsomas/enzimología
7.
Mol Biochem Parasitol ; 160(1): 1-7, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18455248

RESUMEN

More than 30 years ago the potent ornithine decarboxylase inhibitor difluoromethylornithine (DFMO) was designed as new anticancer drug. Its efficacy was not as expected since the polyamine metabolism in mammalian cells seemed to be far more complex. However when DFMO was applied to African trypanosomes its effect on this protozoan parasite was highly convincing. Thenceforward many researchers tested DFMO and also other polyamine synthesis inhibitors against different parasites among them the causative agent of malaria Plasmodium. This review recapitulates the different attempts to interfere chemically with the plasmodial polyamine metabolism, the impact on the disease as well as its biochemical and molecular background. It will show that this fast proliferating organism depends for growth on high amounts of polyamines and that Plasmodium has its own and unique polyamine synthesis, differing highly from the mammalian one mainly in the arrangement of the key enzymes, S-adenosylmethionine decarboxylase and ornithine decarboxylase (AdoMetDC/ODC), on a bifunctional protein.


Asunto(s)
Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/metabolismo , Poliaminas/metabolismo , Adenosilmetionina Descarboxilasa/metabolismo , Animales , Antimaláricos/farmacología , Eflornitina/farmacología , Malaria/parasitología , Ratones , Ornitina Descarboxilasa/metabolismo , Plasmodium falciparum/enzimología , Poliaminas/antagonistas & inhibidores , Espermidina Sintasa/metabolismo
8.
PLoS One ; 3(3): e1815, 2008 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-18350152

RESUMEN

BACKGROUND: Plants, fungi, bacteria and the apicomplexan parasite Plasmodium falciparum are able to synthesize vitamin B6 de novo, whereas mammals depend upon the uptake of this essential nutrient from their diet. The active form of vitamin B6 is pyridoxal 5-phosphate (PLP). For its synthesis two enzymes, Pdx1 and Pdx2, act together, forming a multimeric complex consisting of 12 Pdx1 and 12 Pdx2 protomers. METHODOLOGY/PRINCIPAL FINDINGS: Here we report amino acid residues responsible for stabilization of the structural and enzymatic integrity of the plasmodial PLP synthase, identified by using distinct mutational analysis and biochemical approaches. Residues R85, H88 and E91 (RHE) are located at the Pdx1:Pdx1 interface and play an important role in Pdx1 complex assembly. Mutation of these residues to alanine impedes both Pdx1 activity and Pdx2 binding. Furthermore, changing D26, K83 and K151 (DKK), amino acids from the active site of Pdx1, to alanine obstructs not only enzyme activity but also formation of the complex. In contrast to the monomeric appearance of the RHE mutant, alteration of the DKK residues results in a hexameric assembly, and does not affect Pdx2 binding or its activity. While the modelled position of K151 is distal to the Pdx1:Pdx1 interface, it affects the assembly of hexameric Pdx1 into a functional dodecamer, which is crucial for PLP synthesis. CONCLUSIONS/SIGNIFICANCE: Taken together, our data suggest that the assembly of a functional Pdx1:Pdx2 complex follows a defined pathway and that inhibition of this assembly results in an inactive holoenzyme.


Asunto(s)
Glutaminasa/metabolismo , Plasmodium falciparum/enzimología , Secuencia de Aminoácidos , Animales , Sitios de Unión , Electroforesis en Gel de Poliacrilamida , Glutaminasa/química , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido
9.
FASEB J ; 22(2): 343-54, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17901115

RESUMEN

To elucidate the function of Omega class glutathione transferases (GSTs) (EC 2.5.1.18) in multicellular organisms, the GSTO-1 from Caenorhabditis elegans (GSTO-1; C29E4.7) was investigated. Disc diffusion assays using Escherichia coli overexpressing GSTO-1 provided a test of resistance to long-term exposure under oxidative stress. After affinity purification, the recombinant GSTO-1 had minimal catalytic activity toward classic GST substrates but displayed significant thiol oxidoreductase and dehydroascorbate reductase activity. Microinjection of the GSTO-1-promoter green fluorescent protein construct and immunolocalization by electron microscopy localized the protein exclusively in the intestine of all postembryonic stages of C. elegans. Deletion analysis identified an approximately 300-nucleotide sequence upstream of the ATG start site necessary for GSTO-1 expression. Site-specific mutagenesis of a GATA transcription factor binding motif in the minimal promoter led to the loss of reporter expression. Similarly, RNA interference (RNAi) of Elt-2 indicated the involvement of this gut-specific transcription factor in GSTO-1 expression. Transcriptional up-regulation under stress conditions of GSTO-1 was confirmed by analyzing promoter-reporter constructs in transgenic C. elegans strains. To investigate the function of GSTO-1 in vivo, transgenic animals overexpressing GSTO-1 were generated exhibiting an increased resistance to juglone-, paraquat-, and cumene hydroperoxide-induced oxidative stress. Specific silencing of the GSTO-1 by RNAi created worms with an increased sensitivity to several prooxidants, arsenite, and heat shock. We conclude that the stress-responsive GSTO-1 plays a key role in counteracting environmental stress.


Asunto(s)
Proteínas de Caenorhabditis elegans/clasificación , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Glutatión Transferasa/clasificación , Glutatión Transferasa/metabolismo , Estrés Oxidativo , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Caenorhabditis elegans/ultraestructura , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Factores de Transcripción GATA/genética , Factores de Transcripción GATA/metabolismo , Eliminación de Gen , Regulación de la Expresión Génica , Genes Reporteros/genética , Glutatión Transferasa/química , Glutatión Transferasa/genética , Humanos , Microscopía Electrónica de Transmisión , Microscopía Inmunoelectrónica , Datos de Secuencia Molecular , Filogenia , Regiones Promotoras Genéticas/genética , Interferencia de ARN , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sensibilidad y Especificidad , Alineación de Secuencia , Homología de Secuencia de Aminoácido
10.
Mol Biochem Parasitol ; 157(2): 241-3, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18067979

RESUMEN

Thiamine pyrophosphate (TPP), the active form of vitamin B1, is an essential cofactor for several enzymes. Humans depend exclusively on the uptake of vitamin B1, whereas bacteria, plants, fungi and the malaria parasite Plasmodium falciparum are able to synthesise thiamine monophosphate (TMP) de novo. TMP has to be dephosphorylated prior to pyrophosphorylation in order to obtain TPP. In P. falciparum the phosphatase capable to catalyse this reaction has been identified by analysis of the substrate specificity. The recombinant enzyme accepts beside vitamin B1 also nucleotides, phosphorylated sugars and the B6 vitamer pyridoxal 5'-phosphate. Vitamin B1 biosynthesis is known to occur in the cytosol. The cytosolic localisation of this phosphatase was verified by transfection of a GFP chimera construct. Stage specific Northern blot analysis of the phosphatase clearly identified an expression profile throughout the entire erythrocytic life cycle of P. falciparum and thereby emphasises the importance of dephosphorylation reactions within the malaria parasite.


Asunto(s)
4-Nitrofenilfosfatasa/genética , 4-Nitrofenilfosfatasa/metabolismo , Plasmodium falciparum/enzimología , Tiamina Monofosfato/metabolismo , Animales , Citosol/química , ADN Protozoario/química , ADN Protozoario/genética , Perfilación de la Expresión Génica , Microscopía Fluorescente , Datos de Secuencia Molecular , Nucleótidos/metabolismo , Piridoxal/análogos & derivados , Piridoxal/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análisis de Secuencia de ADN , Especificidad por Sustrato , Tiamina/metabolismo
11.
Arch Pharm (Weinheim) ; 340(12): 661-6, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17994605

RESUMEN

The synthesis and in-vitro antimalarial activity of gamma-substituted bis(pivaloyloxymethyl)ester analogues of the drug candidate fosmidomycin have been investigated. In contrast to the high antimalarial activity of alpha-aryl substituted fosmidomycin analogues like alpha-phenylfosmidomycin, gamma-substituted derivatives display only weak to moderate activity against the chloroquine-sensitive strain 3D7 of Plasmodium falciparum.


Asunto(s)
Antimaláricos/síntesis química , Antimaláricos/farmacología , Fosfomicina/análogos & derivados , Animales , Antimaláricos/química , Ésteres , Fosfomicina/síntesis química , Fosfomicina/química , Fosfomicina/farmacología , Humanos , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/efectos de los fármacos , Relación Estructura-Actividad
12.
J Mol Biol ; 373(1): 167-77, 2007 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-17822713

RESUMEN

Plasmodium falciparum is the causative agent of the most severe type of malaria, a life-threatening disease affecting the lives of over three billion people. Factors like widespread resistance against available drugs and absence of an effective vaccine are seriously compounding control of the malaria parasite. Thus, there is an urgent need for the identification and validation of new drug targets. The enzymes of the polyamine biosynthesis pathway have been suggested as possible targets for the treatment of malaria. One of these enzymes is spermidine synthase (SPDS, putrescine aminopropyltransferase), which catalyzes the transfer of an aminopropyl moiety from decarboxylated S-adenosylmethionine (dcAdoMet) to putrescine, leading to the formation of spermidine and 5'-methylthioadenosine. Here we present the three-dimensional structure of P. falciparum spermidine synthase (pfSPDS) in apo form, in complex with dcAdoMet and two inhibitors, S-adenosyl-1,8-diamino-3-thio-octane (AdoDATO) and trans-4-methylcyclohexylamine (4MCHA). The results show that binding of dcAdoMet to pfSPDS stabilizes the conformation of the flexible gatekeeper loop of the enzyme and affects the conformation of the active-site amino acid residues, preparing the protein for binding of the second substrate. The complexes of AdoDATO and 4MCHA with pfSPDS reveal the mode of interactions of these compounds with the enzyme. While AdoDATO essentially fills the entire active-site pocket, 4MCHA only occupies part of it, which suggests that simple modifications of this compound may yield more potent inhibitors of pfSPDS.


Asunto(s)
Plasmodium falciparum/enzimología , Estructura Terciaria de Proteína , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/química , S-Adenosilmetionina/química , Espermidina Sintasa/antagonistas & inhibidores , Espermidina Sintasa/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , S-Adenosilmetionina/metabolismo , Alineación de Secuencia , Espermidina Sintasa/genética , Espermidina Sintasa/metabolismo
13.
J Enzyme Inhib Med Chem ; 22(3): 327-42, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17674815

RESUMEN

Glutathione-S-transferase(s) (E.C.2.5.1.18, GSTs) have been investigated in parasitic protozoans with respect to their biochemistry and they have been identified as potential vaccine candidates in protozoan parasites and as a target in the synthesis of new antiparasitic agents. In a search towards the identification of novel biochemical targets for antimalarial drug design, the area of Plasmodium glutathione metabolism provides a number of promising chemotherapeutic targets. GST activity was determined in various subcellular fractions of malarial parasites Plasmodium yoelii and was found to be localized mainly in the cytosolic fraction (specific activity, c. 0.058 +/- 0.016 micromol/min/mg protein). Hemin, a known inhibitor of mammalian GST(s), maximally inhibited this enzyme from P. yoelii to nearly 86%. In a search towards synthetic modulators of malarial GST(s), 575 compounds belonging to various chemical classes were screened for their effect on crude GST from P. yoelii and 92 compounds belonging to various chemical classes were studied on recombinant GST from P. falciparum. Among all the compounds screened, 83 compounds inhibited/stimulated the enzyme from P. yoelii/P. falciparum to the extent of 40% or more.


Asunto(s)
Antimaláricos/síntesis química , Antimaláricos/farmacología , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Glutatión Transferasa/antagonistas & inhibidores , Glutatión Transferasa/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/enzimología , Plasmodium yoelii/efectos de los fármacos , Plasmodium yoelii/enzimología , Animales , Antimaláricos/química , Evaluación Preclínica de Medicamentos , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/química , Glutatión Transferasa/metabolismo , Técnicas In Vitro , Cinética , Ratones , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/efectos de los fármacos , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad
14.
Arch Pharm (Weinheim) ; 340(7): 339-44, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17611943

RESUMEN

The synthesis and in-vitro antimalarial activity of conformationally restrained bis(pivaloyloxymethyl) ester analogues of the natural product fosmidomycin is presented. In contrast to alpha-aryl-substituted analogues, conformationally restrained aromatic analogues exhibit only moderate in-vitro antimalarial activity against the chloroquine-sensitive strain 3D7 of Plasmodium falciparum. The most active derivative displays an IC(50) value of 47 microM.


Asunto(s)
Antimaláricos/farmacología , Fosfomicina/análogos & derivados , Profármacos/farmacología , Animales , Antimaláricos/síntesis química , Antimaláricos/química , Ésteres , Fosfomicina/síntesis química , Fosfomicina/química , Fosfomicina/farmacología , Concentración 50 Inhibidora , Conformación Molecular , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/crecimiento & desarrollo , Profármacos/síntesis química , Profármacos/química , Relación Estructura-Actividad
16.
Bioorg Med Chem ; 15(4): 1628-37, 2007 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-17196392

RESUMEN

Spermidine synthase is currently considered as a promising drug target in the malaria parasite, Plasmodium falciparum, due to the vital role of spermidine in the activation of the eukaryotic translation initiation factor (eIF5A) and cell proliferation. However, very limited information was available regarding the structure and mechanism of action of the protein at the start of this study. Structural and mechanistic insights of the P. falciparum spermidine synthase (PfSpdSyn) were obtained utilizing molecular dynamics simulations of a homology model based on the crystal structures of the Arabidopsis thaliana and Thermotoga maritima homologues. Our data are supported by in vitro site-directed mutagenesis of essential residues as well as by a crystal structure of the protein that became available recently. We provide, for the first time, dynamic evidence for the mechanism of the aminopropyltransferase action of PfSpdSyn. This characterization of the structural and mechanistic properties of the PfSpdSyn as well as the elucidation of the active site residues involved in substrate, product, and inhibitor interactions paves the way toward inhibitor selection or design of parasite-specific inhibitors.


Asunto(s)
Simulación por Computador , Plasmodium falciparum/enzimología , Espermidina Sintasa/química , Animales , Sitios de Unión , Proliferación Celular , Movimiento (Física) , Mutagénesis Sitio-Dirigida , Factores de Iniciación de Péptidos/fisiología , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas de Unión al ARN/fisiología , Espermidina Sintasa/genética , Factor 5A Eucariótico de Iniciación de Traducción
17.
Biol Chem ; 387(12): 1583-91, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17132104

RESUMEN

Vitamin B(1) is an essential cofactor for key enzymes such as 2-oxoglutarate dehydrogenase and pyruvate dehydrogenase. Plants, bacteria and fungi, as well as Plasmodium falciparum, are capable of synthesising vitamin B(1)de novo, whereas mammals have to take up this cofactor from their diet. Thiamine, a B(1) vitamer, has to be pyrophosphorylated by thiamine pyrophosphokinase (TPK) to the active form. The human malaria parasite P. falciparum expresses an N-terminally extended pyrophosphokinase throughout the entire erythrocytic life cycle, which was analysed by Northern and Western blotting. The recombinant enzyme shows a specific activity of 27 nmol min(-1) mg(-1) protein and specificity for thiamine with a K(m) value of 73 microM, while thiamine monophosphate is not accepted. Mutational analysis of the N-terminal extension of the plasmodial TPK showed that it influences thiamine binding as well as metal dependence, which suggests N-terminal participation in the conformation of the active site. Protein sequences of various plasmodial TPKs were analysed for their phylogeny, which classified the Plasmodium TPKs to a group distinct from the mammalian TPKs. To verify the location of the parasite TPK within the cell, immunofluorescence analyses were performed. Co-staining of PfTPK with a GFP marker visualised its cytosolic localisation.


Asunto(s)
Plasmodium falciparum/enzimología , Tiamina Pirofosfoquinasa/metabolismo , Tiamina/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Cartilla de ADN , Regulación Enzimológica de la Expresión Génica , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Tiamina Pirofosfoquinasa/química , Tiamina Pirofosfoquinasa/genética
18.
Eur J Med Chem ; 41(12): 1385-97, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17055117

RESUMEN

The phosphonohydroxamic acid Fosmidomycin is a drug candidate for the treatment of Malaria, currently in phase II trials in combination with Clindamycin. In order to obtain compounds of higher lipophilicity, we recently synthesized alpha-phenyl substituted Fosmidomycin derivatives which display high antimalarial activity. We now report the synthesis and in vitro antimalarial activity of arylmethyl substituted bis(pivaloyloxymethyl) ester prodrugs of Fosmidomycin and its acetyl analogue FR900098. The 3,4-dichlorobenzyl substituted derivative of Fosmidomycin proved to be about twice as active as the respective Fosmidomycin prodrug, however, less active than the corresponding FR900098 prodrug. Electron donating substituents as well as voluminous substituents led to a significant reduction of activity.


Asunto(s)
Antimaláricos/química , Antimaláricos/farmacología , Fosfomicina/análogos & derivados , Fosfomicina/síntesis química , Fosfomicina/farmacología , Espectroscopía de Resonancia Magnética , Espectrometría de Masa Bombardeada por Átomos Veloces
19.
Bioorg Med Chem ; 14(15): 5121-35, 2006 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-16679022

RESUMEN

Fosmidomycin is a promising antimalarial drug candidate with a unique chemical structure and a novel mode of action. Chain substituted pivaloyloxymethyl ester derivatives of Fosmidomycin and its acetyl analogue FR900098 have been synthesized and their in vitro antimalarial activity versus the Chloroquine sensitive strain 3D7 of Plasmodium falciparum has been determined.


Asunto(s)
Antimaláricos/síntesis química , Antimaláricos/farmacología , Fosfomicina/análogos & derivados , Ácidos Pentanoicos/síntesis química , Ácidos Pentanoicos/farmacología , Animales , Antimaláricos/química , Relación Dosis-Respuesta a Droga , Fosfomicina/química , Fosfomicina/farmacología , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/clasificación , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/crecimiento & desarrollo , Profármacos/síntesis química , Profármacos/química , Profármacos/farmacología , Estereoisomerismo , Relación Estructura-Actividad
20.
Biol Chem ; 387(1): 41-51, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16497163

RESUMEN

Vitamin B1 (thiamine) is an essential cofactor for several key enzymes of carbohydrate metabolism. Mammals have to salvage this crucial nutrient from their diet to complement their deficiency of de novo synthesis. In contrast, bacteria, fungi, plants and, as reported here, Plasmodium falciparum, possess a vitamin B1 biosynthesis pathway. The plasmodial pathway identified consists of the three vitamin B1 biosynthetic enzymes 5-(2-hydroxy-ethyl)-4-methylthiazole (THZ) kinase (ThiM), 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP)/HMP-P kinase (ThiD) and thiamine phosphate synthase (ThiE). Recombinant PfThiM and PfThiD proteins were biochemically characterised, revealing K(m)app values of 68 microM for THZ and 12 microM for HMP. Furthermore, the ability of PfThiE for generating vitamin B1 was analysed by a complementation assay with thiE-negative E. coli mutants. All three enzymes are expressed throughout the developmental blood stages, as shown by Northern blotting, which indicates the presence of the vitamin B1 biosynthesis enzymes. However, cultivation of the parasite in minimal medium showed a dependency on the provision of HMP or thiamine. These results demonstrate that the human malaria parasite P. falciparum possesses active vitamin B1 biosynthesis, which depends on external provision of thiamine precursors.


Asunto(s)
Transferasas Alquil y Aril/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Plasmodium falciparum/enzimología , Plasmodium falciparum/genética , Pirimidinas/metabolismo , Tiamina/biosíntesis , Transferasas Alquil y Aril/biosíntesis , Secuencia de Aminoácidos , Animales , Humanos , Modelos Biológicos , Datos de Secuencia Molecular , Fosfotransferasas (Aceptor de Grupo Alcohol)/biosíntesis , Fosfotransferasas (Aceptor del Grupo Fosfato)/biosíntesis , Fosfotransferasas (Aceptor del Grupo Fosfato)/química , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Plasmodium falciparum/crecimiento & desarrollo , Pirimidinas/química , Alineación de Secuencia , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...