Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Physiol ; 8: 949, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29213245

RESUMEN

Background: The metabolic syndrome (MetS) and aging are associated with modifications in blood coagulation factors, vascular inflammation, and increased risk of thrombosis. Objectives: Our aim was to determine concomitant changes in thrombin generation in the blood compartment and at the surface of vascular smooth muscle cells (VSMCs) and its interplay with adipokines, free fatty acids (FFA), and metalloproteinases (MMPs) in obese Zucker rats that share features of the human MetS. Methods: Obese and age-matched lean Zucker rats were compared at 25 and 80 weeks of age. Thrombin generation was assessed by calibrated automated thrombography (CAT). Results: Endogenous thrombin potential (ETP) was increased in obese rats independent of platelets and age. Clot half-lysis time was delayed with obesity and age. Interleukin (IL)-1ß and IL-13 were increased with obesity and age respectively. Addition of exogenous fibrinogen, leptin, linoleic, or palmitic acid increased thrombin generation in plasma whereas adiponectin had an opposite effect. ETP was increased at the surface of VSMCs from obese rats and addition of exogenous palmitic acid further enhanced ETP values. Gelatinase activity was increased in aorta at both ages in obese rats and MMP-2 activity was increased in VSMCs from obese rats. Conclusions: Our study demonstrated in MetS an early prothrombotic phenotype of the blood compartment reinforced by procoagulant properties of dedifferentiated and inflammatory VSMCs. Mechanisms involved (1) increased fibrinogen and impaired fibrinolysis and (2) increased saturated fatty acids responsible for additive procoagulant effects. Whether specifically targeting this hypercoagulability using direct thrombin inhibitors would improve outcome in MetS is worth investigating.

2.
Sci Rep ; 5: 10074, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25975937

RESUMEN

Characterisation and quantification of tissue structures is limited by sectioning-induced artefacts and by the difficulties of visualising and segmenting 3D volumes. Here we demonstrate that, even in the absence of X-ray contrast agents, X-ray computed microtomography (microCT) and nanotomography (nanoCT) can circumvent these problems by rapidly resolving compositionally discrete 3D tissue regions (such as the collagen-rich adventitia and elastin-rich lamellae in intact rat arteries) which in turn can be segmented due to their different X-ray opacities and morphologies. We then establish, using X-ray tomograms of both unpressurised and pressurised arteries that intra-luminal pressure not only increases lumen cross-sectional area and straightens medial elastic lamellae but also induces profound remodelling of the adventitial layer. Finally we apply microCT to another human organ (skin) to visualise the cell-rich epidermis and extracellular matrix-rich dermis and to show that conventional histological and immunohistochemical staining protocols are compatible with prior X-ray exposure. As a consequence we suggest that microCT could be combined with optical microscopy to characterise the 3D structure and composition of archival paraffin embedded biological materials and of mechanically stressed dynamic tissues such as the heart, lungs and tendons.


Asunto(s)
Adventicia/citología , Arterias/citología , Dermis/citología , Células Epidérmicas , Imagenología Tridimensional/métodos , Adventicia/anatomía & histología , Animales , Arterias/anatomía & histología , Medios de Contraste , Dermis/anatomía & histología , Epidermis/anatomía & histología , Matriz Extracelular/fisiología , Humanos , Masculino , Ratas , Ratas Wistar , Tomografía Computarizada por Rayos X/métodos
3.
J Appl Physiol (1985) ; 112(6): 956-61, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22174400

RESUMEN

Low load resistance training with blood flow restriction (BFR) can increase muscle size and strength, but the implications on the conduit artery are uncertain. We examined the effects of low-load dynamic handgrip training with and without BFR, and detraining, on measures of brachial artery function and structure. Nine male participants (26 ± 4 yr, 178 ± 3 cm, 78 ± 10 kg) completed 4 wk (3 days/wk) of dynamic handgrip training at 40% 1 repetition maximum (1RM). In a counterbalanced manner, one forearm trained under BFR (occlusion cuff at 80 mmHg) and the other under nonrestricted (CON) conditions. Brachial artery function [flow-mediated dilation (FMD)] and structure (diameter) were assessed using Doppler ultrasound. Measurements were made before training (pretraining), after training (posttraining), and after 2-wk no training (detraining). Brachial artery diameter at rest, in response to 5-min ischemia (peak diameter), and ischemic exercise (maximal diameter) increased by 3.0%, 2.4%, and 3.1%, respectively, after BFR training but not after CON. FMD did not change at any time point in either arm. Vascular measures in the BFR arm returned to baseline after 2 wk detraining with no change after CON. The data demonstrate that dynamic low-load handgrip training with BFR induced transient adaptations to conduit artery structure but not function.


Asunto(s)
Brazo/fisiología , Arteria Braquial/fisiología , Ejercicio Físico/fisiología , Antebrazo/fisiología , Fuerza de la Mano/fisiología , Mano/irrigación sanguínea , Flujo Sanguíneo Regional/fisiología , Adaptación Fisiológica/fisiología , Adulto , Brazo/irrigación sanguínea , Velocidad del Flujo Sanguíneo/fisiología , Antebrazo/irrigación sanguínea , Humanos , Masculino , Entrenamiento de Fuerza/métodos , Vasodilatación/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...