Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Parasitol Res ; 2023: 7218073, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153519

RESUMEN

Camel trypanosomiasis (Surra) is endemic in the Horn of Africa. Understanding the spatiotemporal variations in Surra prevalence, vector dynamics, and host-related risk factors is important in developing effective control strategies. A repeated cross-sectional study was conducted to determine the Surra parasitological prevalence, livestock reservoirs, vector density/diversity, and host-related risk factors in Kenya. Random samples of 847, 1079, and 824 camels were screened at the start of the dry season, peak dry season, and during the rainy season, respectively. Blood samples were examined using the dark ground/phase contrast buffy-coat technique, and Trypanosoma species were identified based on their movement and morphology in wet and stained thin smears. Reservoir status for Trypanosoma evansi was assessed in 406 cattle and 372 goats. A rainy and dry seasons entomological surveys were conducted to determine the Surra vector abundance/diversity and spatiotemporal density changes. Surra prevalence was 7.1%, 3.4%, and 4.1% at the start of the dry season, peak dry season, and rainy season, respectively. Camel co-infections by Trypanozoon (T. evansi or Trypanosoma brucei brucei) and Trypanosoma vivax were recorded. Spatial variations in Surra prevalence were recorded at the beginning of dry (X (7, N = 846) 2 = 110.9, p ≤ 0.001), peak dry (X (7, N = 1079) 2 = 42.2, p ≤ 0.001), and rainy (X (7, N = 824) 2 = 29.1, p ≤ 0.001) seasons. The screened cattle and goats tested negative for Trypanozoon (T. evansi or T. b. brucei), while two cattle tested positive for Trypanosoma congolense. Biting fly catches were composed of a single species from Tabanus, Atylotus, Philoliche, Chrysops, and Stomoxys genera. The total catches for Philoliche, Chrysops, and Stomoxys were higher in the rainy than dry season consistent with the prevalence results. Surra remains an important camel disease in the region with its prevalence varying in space and time. Camel co-infections by Trypanozoon (T. evansi or T. b. brucei) and T. vivax necessitate proper diagnosis of suspected cases and targeted therapy.

2.
PLoS One ; 18(2): e0281180, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36730273

RESUMEN

Trypanocidal resistance is a major cause of treatment failure. This study evaluated the sensitivity of Trypanosoma evansi field isolates collected from Marsabit and Isiolo counties, Kenya. A total of 2,750 camels were screened using parasitological tests for trypanosomes. Of the screened camels, 113 tested positive from which 40 T. evansi isolates were tested using the single dose mice sensitivity test. Five treatment groups each comprising of 6 mice were inoculated intraperitoneally with 1x105 trypanosomes of each isolate and treated 24 hours later with isometamidium chloride at 1 mg/kg, homidium chloride at 1mg/kg, diminazene aceturate at 20 mg/kg and quinapyramine sulphate & chloride at 1 mg/kg. The fifth group was left untreated (positive control). The mice were monitored daily for 60 days. A survey on camel owners' practices that influence development of resistance to trypanocidal drugs was then conducted. Results indicated presence of drug resistance in all the 7 study sites that had infected camels. Seven of the isolates tested were resistant to diminazene aceturate whereas, 28, 33 and 34 were resistant to isometamidium chloride, quinapyramine sulphate & chloride and homidium chloride, respectively. Seven (17.5%) isolates of the 40 tested were sensitive to all 4 drugs, whereas, 7.5%, 10%,55% and 10% were resistant to 1,2,3 and 4 drugs, respectively. The prevalence of multiple drug resistance was 75%. Survey data indicated that camel management practices influenced the prevalence and degree of drug resistance. In conclusion, the multiple drug resistance observed in the two counties may not be an indication of total trypanocidal drug failure. Judicious treatment of confirmed trypanosomiasis cases with correct dosage would still be effective in controlling the disease since the observed resistance was at the population and not clonal level. However, integrated control of the disease and the vectors using available alternative methods is recommended to reduce drug use.


Asunto(s)
Tripanocidas , Trypanosoma , Tripanosomiasis Africana , Ratones , Animales , Tripanocidas/farmacología , Tripanocidas/uso terapéutico , Camelus , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/veterinaria , Kenia , Cloruros/farmacología , Fenantridinas/farmacología , Fenantridinas/uso terapéutico , Diminazeno/farmacología , Diminazeno/uso terapéutico , Resistencia a Medicamentos
3.
BMC Microbiol ; 18(Suppl 1): 146, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30470178

RESUMEN

BACKGROUND: The tsetse fly (Glossina sp.) midgut is colonized by maternally transmitted and environmentally acquired bacteria. Additionally, the midgut serves as a niche in which pathogenic African trypanosomes reside within infected flies. Tsetse's bacterial microbiota impacts many aspects of the fly's physiology. However, little is known about the structure of tsetse's midgut-associated bacterial communities as they relate to geographically distinct fly habitats in east Africa and their contributions to parasite infection outcomes. We utilized culture dependent and independent methods to characterize the taxonomic structure and density of bacterial communities that reside within the midgut of tsetse flies collected at geographically distinct locations in Kenya and Uganda. RESULTS: Using culture dependent methods, we isolated 34 strains of bacteria from four different tsetse species (G. pallidipes, G. brevipalpis, G. fuscipes and G. fuscipleuris) captured at three distinct locations in Kenya. To increase the depth of this study, we deep sequenced midguts from individual uninfected and trypanosome infected G. pallidipes captured at two distinct locations in Kenya and one in Uganda. We found that tsetse's obligate endosymbiont, Wigglesworthia, was the most abundant bacterium present in the midgut of G. pallidipes, and the density of this bacterium remained largely consistent regardless of whether or not its tsetse host was infected with trypanosomes. These fly populations also housed the commensal symbiont Sodalis, which was found at significantly higher densities in trypanosome infected compared to uninfected flies. Finally, midguts of field-captured G. pallidipes were colonized with distinct, low density communities of environmentally acquired microbes that differed in taxonomic structure depending on parasite infection status and the geographic location from which the flies were collected. CONCLUSIONS: The results of this study will enhance our understanding of the tripartite relationship between tsetse, its microbiota and trypanosome vector competence. This information may be useful for developing novel disease control strategies or enhancing the efficacy of those already in use.


Asunto(s)
Bacterias/clasificación , Microbioma Gastrointestinal , Insectos Vectores/microbiología , Trypanosoma/fisiología , Moscas Tse-Tse/microbiología , Animales , Geografía , Secuenciación de Nucleótidos de Alto Rendimiento , Insectos Vectores/parasitología , Kenia , Simbiosis , Moscas Tse-Tse/parasitología , Uganda
4.
BMC Microbiol ; 18(Suppl 1): 179, 2018 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-30470182

RESUMEN

With the absence of effective prophylactic vaccines and drugs against African trypanosomosis, control of this group of zoonotic neglected tropical diseases depends the control of the tsetse fly vector. When applied in an area-wide insect pest management approach, the sterile insect technique (SIT) is effective in eliminating single tsetse species from isolated populations. The need to enhance the effectiveness of SIT led to the concept of investigating tsetse-trypanosome interactions by a consortium of researchers in a five-year (2013-2018) Coordinated Research Project (CRP) organized by the Joint Division of FAO/IAEA. The goal of this CRP was to elucidate tsetse-symbiome-pathogen molecular interactions to improve SIT and SIT-compatible interventions for trypanosomoses control by enhancing vector refractoriness. This would allow extension of SIT into areas with potential disease transmission. This paper highlights the CRP's major achievements and discusses the science-based perspectives for successful mitigation or eradication of African trypanosomosis.


Asunto(s)
Insectos Vectores/fisiología , Simbiosis/genética , Moscas Tse-Tse/parasitología , Animales , Femenino , Control de Insectos/métodos , Control de Insectos/organización & administración , Insectos Vectores/parasitología , Microbiota , Trypanosoma/genética , Tripanosomiasis Africana/prevención & control , Tripanosomiasis Africana/transmisión , Moscas Tse-Tse/fisiología
5.
Onderstepoort J Vet Res ; 84(1): e1-e10, 2017 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-28697609

RESUMEN

African animal trypanosomiasis causes significant economic losses in sub-Saharan African countries because of livestock mortalities and reduced productivity. Trypanosomes, the causative agents, are transmitted by tsetse flies (Glossina spp.). In the current study, we compared and contrasted the virulence characteristics of five Trypanosoma congolense and Trypanosoma brucei isolates using groups of Swiss white mice (n = 6). We further determined the vectorial capacity of Glossina pallidipes, for each of the trypanosome isolates. Results showed that the overall pre-patent (PP) periods were 8.4 ± 0.9 (range, 4-11) and 4.5 ± 0.2 (range, 4-6) for T. congolense and T. brucei isolates, respectively (p < 0.01). Despite the longer mean PP, T. congolense-infected mice exhibited a significantly (p < 0.05) shorter survival time than T. brucei-infected mice, indicating greater virulence. Differences were also noted among the individual isolates with T. congolense KETRI 2909 causing the most acute infection of the entire group with a mean ± standard error survival time of 9 ± 2.1 days. Survival time of infected tsetse flies and the proportion with mature infections at 30 days post-exposure to the infective blood meals varied among isolates, with subacute infection-causing T. congolense EATRO 1829 and chronic infection-causing T. brucei EATRO 2267 isolates showing the highest mature infection rates of 38.5% and 23.1%, respectively. Therefore, our study provides further evidence of occurrence of differences in virulence and transmissibility of eastern African trypanosome strains and has identified two, T. congolense EATRO 1829 and T. brucei EATRO 2267, as suitable for tsetse infectivity and transmissibility experiments.


Asunto(s)
Insectos Vectores/parasitología , Trypanosoma brucei brucei/patogenicidad , Trypanosoma congolense/patogenicidad , Tripanosomiasis Africana/veterinaria , Moscas Tse-Tse/parasitología , África , Animales , Ratones , Tripanosomiasis Africana/epidemiología , Tripanosomiasis Africana/parasitología , Virulencia
6.
Vet Parasitol ; 211(1-2): 93-8, 2015 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-25983231

RESUMEN

Tsetse flies (Diptera: Glossinidae) are considered primary cyclical vectors that transmit pathogenic trypanosomes in Africa. They harbour a variety of microbes including Wolbachia, Sodalis and the salivary gland hypertrophy virus (SGHV) which are all vertically transmitted. Knowledge on tsetse microbiome and their interactions may identify novel strategies for tsetse fly and trypanosomiasis control. Area-wide application of such strategies requires an understanding of the natural microbiome frequency in the different species and subspecies of Glossina in their geographical populations. Consequently, this study determined the prevalence of Sodalis, Wolbachia, SGHV and trypanosome infections in Glossina morsitanscentralis from two sites of Western Zambia. We also explored possible associations of the microbes with trypanosome infections. Male G. morsitanscentralis samples were collected from two sites (Lyoni and Lusinina) in Western Zambia. The age structure of the flies at each site was determined using the wing fray method. DNA was extracted from the samples and analyzed for Wolbachia, Sodalis, SGHV and trypanosome presence using PCR. Associations and measures of associations between trypanosome infection and microbes in the fly were determined. The flies from the two locations (Lusinina, n=45 and Lyoni, n=24) had a similar age structure with their median fray category not being significantly different (p=0.698). The overall prevalence of Wolbachia was 72.5% (95% CI: 61.6-83.3%), Sodalis was 15.9% (95% CI: 7.1-24.8%), SGHV was 31.9% (95% CI: 20.6-43.2%) and Trypanosoma species was 23.2% (95% CI: 13-33.4%). The prevalence of Wolbachia was significantly higher in Lusinina than Lyoni (p=0.000). However this was not the case for Sodalis, SGHV and Trypanosoma species. Despite the low number of flies that were positive for both trypanosome and Sodalis (6; 8.7%), a statistically significant association (p=0.013; AOR 6.2; 95% CI: 1.5-25.8) was observed in G. morsitanscentralis. The study showed that the prevalence of microbiota may vary within the same species of the tsetse depending on the geographical location as was the case of Wolbachia. Further it showed that infection with Sodalis could affect vector competence. The study concludes that Sodalis could be an ideal candidate for symbiont-mediated trypanosomiasis control interventions in G. morsitanscentralis.


Asunto(s)
Enterobacteriaceae/aislamiento & purificación , Microbiota , Trypanosoma/fisiología , Tripanosomiasis/prevención & control , Moscas Tse-Tse/microbiología , Wolbachia/aislamiento & purificación , Animales , Enterobacteriaceae/genética , Femenino , Masculino , Simbiosis , Moscas Tse-Tse/parasitología , Wolbachia/genética , Zambia/epidemiología
7.
J Insect Sci ; 142014.
Artículo en Inglés | MEDLINE | ID: mdl-25527583

RESUMEN

The establishment of infection with three Trypanosoma spp (Gruby) (Kinetoplastida: Trypanosomatidae), specifically Trypanosoma brucei brucei (Plimmer and Bradford), T. b. rhodesiense (Stephen and Fatham) and T. congolense (Broden) was evaluated in Glossina pallidipes (Austen) (Diptera: Glossinidae) that either harbored or were uninfected by the endosymbiont Sodalis glossinidius (Dale and Maudlin) (Enterobacteriales: Enterobacteriaceae). Temporal variation of co-infection with T. b. rhodesiense and S. glossinidius was also assessed. The results show that both S. glossinidius infection (χ(2)= 1.134, df = 2, P = 0.567) and trypanosome infection rate (χ(2)= 1.85, df = 2, P = 0.397) were comparable across the three infection groups. A significant association was observed between the presence of S. glossinidius and concurrent trypanosome infection with T. b. rhodesiense (P = 0.0009) and T. congolense (P = 0.0074) but not with T. b. brucei (P = 0.5491). The time-series experiment revealed a slight decrease in the incidence of S. glossinidius infection with increasing fly age, which may infer a fitness cost associated with Sodalis infection. The present findings contribute to research on the feasibility of S. glossinidius-based paratransgenic approaches in tsetse and trypanosomiasis control, in particular relating to G. pallidipes control.


Asunto(s)
Enterobacteriaceae/fisiología , Insectos Vectores/microbiología , Insectos Vectores/fisiología , Trypanosoma/fisiología , Moscas Tse-Tse/microbiología , Moscas Tse-Tse/parasitología , Animales , Masculino , Especificidad de la Especie , Simbiosis , Trypanosoma brucei brucei/fisiología , Trypanosoma brucei rhodesiense/fisiología , Trypanosoma congolense/fisiología
8.
Parasit Vectors ; 6(1): 232, 2013 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-23924682

RESUMEN

BACKGROUND: Tsetse flies harbor at least three bacterial symbionts: Wigglesworthia glossinidia, Wolbachia pipientis and Sodalis glossinidius. Wigglesworthia and Sodalis reside in the gut in close association with trypanosomes and may influence establishment and development of midgut parasite infections. Wolbachia has been shown to induce reproductive effects in infected tsetse. This study was conducted to determine the prevalence of these endosymbionts in natural populations of G. austeni and G. pallidipes and to assess the degree of concurrent infections with trypanosomes. METHODS: Fly samples analyzed originated from Kenyan coastal forests (trapped in 2009-2011) and South African G. austeni collected in 2008. The age structure was estimated by standard methods. G. austeni (n=298) and G. pallidipes (n= 302) were analyzed for infection with Wolbachia and Sodalis using PCR. Trypanosome infection was determined either by microscopic examination of dissected organs or by PCR amplification. RESULTS: Overall we observed that G. pallidipes females had a longer lifespan (70 d) than G. austeni (54 d) in natural populations. Wolbachia infections were present in all G. austeni flies analysed, while in contrast, this symbiont was absent from G. pallidipes. The density of Wolbachia infections in the Kenyan G. austeni population was higher than that observed in South African flies. The infection prevalence of Sodalis ranged from 3.7% in G. austeni to about 16% in G. pallidipes. Microscopic examination of midguts revealed an overall trypanosome infection prevalence of 6% (n = 235) and 5% (n = 552), while evaluation with ITS1 primers indicated a prevalence of about 13% (n = 296) and 10% (n = 302) in G. austeni and G. pallidipes, respectively. The majority of infections (46%) were with T. congolense. Co-infection with all three organisms was observed at 1% and 3.3% in G. austeni and G. pallidipes, respectively. Eleven out of the thirteen (85%) co-infected flies harboured T. congolense and T. simiae parasites. While the association between trypanosomes and Sodalis infection was statistically significant in G. pallidipes (P = 0.0127), the number of co-infected flies was too few for a definite conclusion. CONCLUSIONS: The tsetse populations analyzed differed in the prevalence of symbionts, despite being sympatric and therefore exposed to identical environmental factors. The density of infections with Wolbachia also differed between G. austeni populations. There were too few natural co-infections detected with the Sodalis and trypanosomes to suggest extensive inter-relations between these infections in natural populations. We discuss these findings in the context of potential symbiont-mediated control interventions to reduce parasite infections and/or fly populations.


Asunto(s)
Enterobacteriaceae/fisiología , Trypanosoma/fisiología , Moscas Tse-Tse/microbiología , Moscas Tse-Tse/parasitología , Wolbachia/fisiología , Animales , Coinfección/microbiología , Coinfección/parasitología , Coinfección/veterinaria , Enterobacteriaceae/genética , Enterobacteriaceae/aislamiento & purificación , Femenino , Insectos Vectores/microbiología , Insectos Vectores/parasitología , Insectos Vectores/fisiología , Masculino , Simbiosis , Trypanosoma/genética , Trypanosoma/aislamiento & purificación , Moscas Tse-Tse/fisiología , Wolbachia/genética , Wolbachia/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...