Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Dent Mater ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38853105

RESUMEN

OBJECTIVES: To evaluate the hygroscopic expansion characterization of resin composite dies during thermal cycling, and their influence on the fracture resistance of dental ceramic materials as well as the effect of pre-immersion on these measurements. METHODS: Disc-shaped specimens (φ = 15.0 mm, h = 1.2 mm) and anatomical crown dies of four resin composites (epoxy, Z350, P60, G10) were fabricated. Disc-shaped samples were continuously soaked in distilled water and the volume expansion was measured at different time point by Archimedes method. Disc-shaped samples were pre-immersed for 0, 7, or 30 days, elastic modulus and hardness were measured using Nanoindentation test; thermal cycling (TC) test was performed (5 °C-55 °C, 104 cycles), and volume expansion during TC was measured. Four kinds of resin die with pre-immersion for 0, 7, or 30 days were cemented to 5Y-Z crown, or epoxy dies without pre-immersion were cemented to 5Y-Z, 3Y-Z and lithium disilicate glass (LDG) crowns, and load-to-failure testing was performed before and after TC. Finite element analysis (FEA) and fractography analysis were also conducted. RESULTS: The hygroscopic expansion was in the order: epoxy > Z350 > P60 > G10. Except for G10, the other three resin composites exhibited different degrees of hygroscopic expansion during TC. Only the elastic modulus and hardness of epoxy decreased after water storage. However, only the fracture loads of 5Y-Z and LDG crowns supported by epoxy dies were significantly decreased after TC. FEA showed a stress concentration at the cervical region of the crown after volume expansion of the die, leading to the increase of the peak stress at the crown during loading. SIGNIFICANCE: Only the hygroscopic expansion of epoxy dies caused by TC led to the decrease in the fracture resistance of the 5Y-Z and LDG crown, which may be related to the decrease in the elastic modulus of the epoxy die and the tensile stress caused by it.

2.
ACS Biomater Sci Eng ; 10(5): 2863-2879, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38696332

RESUMEN

The present work describes a preclinical trial (in silico, in vivo and in vitro) protocol to assess the biomechanical performance and osteogenic capability of 3D-printed polymeric scaffolds implants used to repair partial defects in a sheep mandible. The protocol spans multiple steps of the medical device development pipeline, including initial concept design of the scaffold implant, digital twin in silico finite element modeling, manufacturing of the device prototype, in vivo device implantation, and in vitro laboratory mechanical testing. First, a patient-specific one-body scaffold implant used for reconstructing a critical-sized defect along the lower border of the sheep mandible ramus was designed using on computed-tomographic (CT) imagery and computer-aided design software. Next, the biomechanical performance of the implant was predicted numerically by simulating physiological load conditions in a digital twin in silico finite element model of the sheep mandible. This allowed for possible redesigning of the implant prior to commencing in vivo experimentation. Then, two types of polymeric biomaterials were used to manufacture the mandibular scaffold implants: poly ether ether ketone (PEEK) and poly ether ketone (PEK) printed with fused deposition modeling (FDM) and selective laser sintering (SLS), respectively. Then, after being implanted for 13 weeks in vivo, the implant and surrounding bone tissue was harvested and microCT scanned to visualize and quantify neo-tissue formation in the porous space of the scaffold. Finally, the implant and local bone tissue was assessed by in vitro laboratory mechanical testing to quantify the osteointegration. The protocol consists of six component procedures: (i) scaffold design and finite element analysis to predict its biomechanical response, (ii) scaffold fabrication with FDM and SLS 3D printing, (iii) surface treatment of the scaffold with plasma immersion ion implantation (PIII) techniques, (iv) ovine mandibular implantation, (v) postoperative sheep recovery, euthanasia, and harvesting of the scaffold and surrounding host bone, microCT scanning, and (vi) in vitro laboratory mechanical tests of the harvested scaffolds. The results of microCT imagery and 3-point mechanical bend testing demonstrate that PIII-SLS-PEK is a promising biomaterial for the manufacturing of scaffold implants to enhance the bone-scaffold contact and bone ingrowth in porous scaffold implants. MicroCT images of the harvested implant and surrounding bone tissue showed encouraging new bone growth at the scaffold-bone interface and inside the porous network of the lattice structure of the SLS-PEK scaffolds.


Asunto(s)
Materiales Biocompatibles , Mandíbula , Andamios del Tejido , Animales , Ovinos , Mandíbula/cirugía , Mandíbula/diagnóstico por imagen , Andamios del Tejido/química , Impresión Tridimensional , Análisis de Elementos Finitos , Osteogénesis
3.
Acta Biomater ; 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38801871

RESUMEN

The micro/nano pores in natural mineralized tissues can, to a certain extent, affect their responses to mechanical loading but are generally ignored in existing indentation analysis. In this study, we first examined the void volume fraction of sound and caries lesion enamels through micro-computed tomography (micro-CT). A Berkovich indentation study was then carried out to characterize the effect of porous microstructure on the mechanical behavior of the human enamels. The indentation tests were also modeled using the nonlinear finite element analysis technique to simulate indentation load-displacement curves, which showed reasonable agreement with the experimental measurements. From the simulation results, the extent of densification in the plastic zone was identified and the corresponding stress and contact pressure evolutions were quantified. Further, a conventional elastic-perfectly plastic material model without considering micropores was also developed to investigate the compaction effect of the porous structure. The simulation results reveal that conventional elastic perfect-plastic constitutive models become less reliable to model the mechanical behavior of carious lesion enamel with increasing loss of mineral content as it underestimates the yield stress and plastic energy dissipation. This study divulges the importance of compaction of porous enamel structure beneath the indented area. Note that understanding the effect of porous microstructures on plastic behavior is vital as the involved inelastic deformation mechanism associated with irreversible processes such as localized microcracking has a significant bearing on wear and fatigue behavior of enamel. STATEMENT OF SIGNIFICANCE: Based on micro-CT and nano-indentation characterization, a numerical model was developed aiming to precisely describe the deformation behavior of naturally porous enamel. Inelastic properties and energy dissipation characteristics of porous enamel were investigated in detail. This work demonstrated that the existence of micro-pores in White Spot Lesions (WSLs) contributes to mechanical stability, which can mitigate the reduction in Young's modulus and fracture toughness resulting from loss of mineral components. The knowledge gained from this study can be used to explain the mechanisms related to irreversible processes, such as contact induced cracking and wear, and strengthen understanding of the mechanical behavior of porous mineralized tissues.

4.
Int J Cancer ; 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38556848

RESUMEN

Patients treated for oral cancer, may experience restricted mouth opening (trismus). Barriers such as cost have limited the utilization of traditional jaw stretching devices, and consequently, patients experience problems with swallowing, oral care, communication, and cancer surveillance. The safety and efficacy of Restorabite™, a new device designed to overcome these barriers, is evaluated prospectively over 12 months. This phase II investigator-led trial included patients with chronic trismus underwent 10-weeks of trismus therapy using Restorabite™. Safety, adherence, changes in mouth opening, and patient-reported outcomes are presented. 114/120 participants with trismus completed the intervention, and 104 had their progress monitored for 12 months. Thirteen participants withdrew due to tumour recurrence. At the completion of the intervention, mouth opening improved by 10.4 mm (p < .001). This increased to 13.7 mm at 12 months (p < .001). Patient reported outcome all significantly improved and 47 participants were no longer classified as having trismus. There were no serious treatment related adverse events. In patients with trismus following head and neck cancer treatment, a 10-week programme of jaw stretching exercises using Restorbite™ safely improves mouth opening and associated quality of life outcomes with high adherence and the benefits are maintained for 12-months.

5.
Adv Sci (Weinh) ; 10(35): e2305080, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37870215

RESUMEN

Skeletal muscle comprises a large, heterogeneous assortment of cell populations that interact to maintain muscle homeostasis, but little is known about the mechanism that controls myogenic development in response to artificial selection. Different pig (Sus scrofa) breeds exhibit distinct muscle phenotypes resulting from domestication and selective breeding. Using unbiased single-cell transcriptomic sequencing analysis (scRNA-seq), the impact of artificial selection on cell profiles is investigated in neonatal skeletal muscle of pigs. This work provides panoramic muscle-resident cell profiles and identifies novel and breed-specific cells, mapping them on pseudotime trajectories. Artificial selection has elicited significant changes in muscle-resident cell profiles, while conserving signs of generational environmental challenges. These results suggest that fibro-adipogenic progenitors serve as a cellular interaction hub and that specific transcription factors identified here may serve as candidate target regulons for the pursuit of a specific muscle phenotype. Furthermore, a cross-species comparison of humans, mice, and pigs illustrates the conservation and divergence of mammalian muscle ontology. The findings of this study reveal shifts in cellular heterogeneity, novel cell subpopulations, and their interactions that may greatly facilitate the understanding of the mechanism underlying divergent muscle phenotypes arising from artificial selection.


Asunto(s)
Adipogénesis , Músculo Esquelético , Humanos , Animales , Ratones , Fenotipo , Desarrollo de Músculos/genética , ARN , Mamíferos
6.
Adv Healthc Mater ; 12(8): e2201830, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36521080

RESUMEN

The mechanical stimuli generated by body exercise can be transmitted from cortical bone into the deep bone marrow (mechanopropagation). Excitingly, a mechanosensitive perivascular stem cell niche is recently identified within the bone marrow for osteogenesis and lymphopoiesis. Although it is long known that they are maintained by exercise-induced mechanical stimulation, the mechanopropagation from compact bone to deep bone marrow vasculature remains elusive of this fundamental mechanobiology field. No experimental system is available yet to directly understand such exercise-induced mechanopropagation at the bone-vessel interface. To this end, taking advantage of the revolutionary in vivo 3D deep bone imaging, an integrated computational biomechanics framework to quantitatively evaluate the mechanopropagation capabilities for bone marrow arterioles, arteries, and sinusoids is devised. As a highlight, the 3D geometries of blood vessels are smoothly reconstructed in the presence of vessel wall thickness and intravascular pulse pressure. By implementing the 5-parameter Mooney-Rivlin model that simulates the hyperelastic vessel properties, finite element analysis to thoroughly investigate the mechanical effects of exercise-induced intravascular vibratory stretching on bone marrow vasculature is performed. In addition, the blood pressure and cortical bone bending effects on vascular mechanoproperties are examined. For the first time, movement-induced mechanopropagation from the hard cortical bone to the soft vasculature in the bone marrow is numerically simulated. It is concluded that arterioles and arteries are much more efficient in propagating mechanical force than sinusoids due to their stiffness. In the future, this in-silico approach can be combined with other clinical imaging modalities for subject/patient-specific vascular reconstruction and biomechanical analysis, providing large-scale phenotypic data for personalized mechanobiology discovery.


Asunto(s)
Médula Ósea , Tomografía Computarizada por Rayos X , Humanos , Médula Ósea/irrigación sanguínea , Fenómenos Biomecánicos , Arteriolas , Huesos
7.
J Mech Behav Biomed Mater ; 138: 105580, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36509011

RESUMEN

Despite significant advances in the design optimization of bone scaffolds for enhancing their biomechanical properties, the functionality of these synthetic constructs remains suboptimal. One of the main challenges in the structural optimization of bone scaffolds is associated with the large uncertainties caused by the manufacturing process, such as variations in scaffolds' geometric features and constitutive material properties after fabrication. Unfortunately, such non-deterministic issues have not been considered in the existing optimization frameworks, thereby limiting their reliability. To address this challenge, a novel multiobjective robust optimization approach is proposed here such that the effects of uncertainties on the optimized design can be minimized. This study first conducted computational analyses of a parameterized ceramic scaffold model to determine its effective modulus, structural strength, and permeability. Then, surrogate models were constructed to formulate explicit mathematical relationships between the geometrical parameters (design variables) and mechanical and fluidic properties. The Non-Dominated Sorting Genetic Algorithm II (NSGA-II) was adopted to generate the robust Pareto solutions for an optimal set of trade-offs between the competing objective functions while ensuring the effects of the noise parameters to be minimal. Note that the nondeterministic optimization of tissue scaffold presented here is the first of its kind in open literature, which is expected to shed some light on this significant topic of scaffold design and additive manufacturing in a more realistic way.


Asunto(s)
Huesos , Andamios del Tejido , Andamios del Tejido/química , Reproducibilidad de los Resultados , Incertidumbre , Impresión Tridimensional , Ingeniería de Tejidos
8.
J Mech Behav Biomed Mater ; 136: 105483, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36302272

RESUMEN

BACKGROUND AND OBJECTIVE: The fibula free flap (FFF) has been extensively used to repair large segmental bone defects in the maxillofacial region. The reconstruction plate plays a key role in maintaining stability and load-sharing while the fibula unites with adjacent bone in the course of healing and remodeling. However, not all fibula flaps would fully unite, and fatigue of prosthetic devices has been recognized as one major concern for long-term load-bearing applications. This study aims to develop a numerical approach for predicting the fatigue life of the reconstruction plate by taking into account the effect of ongoing bone remodeling. METHODS: The patient-specific mandible reconstruction with a prosthetic system is studied in this work. The 3D finite element model with heterogeneous material properties obtained from clinical computerized tomography (CT) data is developed for bone, and eXtended Finite Element Method (XFEM) is adopted for the fatigue analysis of the plate. During the remodeling process, the changing apparent density and Young's modulus of bone are simulated in a step-wise fashion on the basis of Wolff's law, which is correlated with the specific clinical follow-up. The maximum biting forces were considered as the driving force on the bone remodeling, which are measured clinically at different time points (4, 16 and 28 months) after reconstruction surgery. RESULTS: Under various occlusal loadings, the interaction between fatigue crack growth and bone remodeling is investigated to gain new insights for the future design of prosthetic devices. The simulation results reveal that appropriate remodeling of grafted bone could extend the fatigue life of fixation plates in a positive way. On the other hand, the rising occlusal load associated with healing and remodeling could lead to fatigue fracture of fixation plate and potentially cause severe bone resorption. CONCLUSION: This study proposes an effective approach for more realistically predicting fatigue life of prosthetic devices subject to a tissue remodeling condition in-silico. It is anticipated to provide a guideline for deriving an optimal design of patient-specific prosthetic devices to better ensure longevity.


Asunto(s)
Colgajos Tisulares Libres , Mandíbula , Humanos , Mandíbula/cirugía , Placas Óseas , Fenómenos Mecánicos , Colgajos Tisulares Libres/trasplante , Remodelación Ósea , Peroné
9.
J Endod ; 48(7): 893-901, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35405160

RESUMEN

INTRODUCTION: This study aimed to investigate whether the direction of force applied to the occlusal surface influenced the pattern of tensile stresses in roots of sound and root canal-prepared mandibular molar teeth. The effect of obturation forces on the development of apical stress was also investigated. To this end, models were constructed using micro-computed tomographic imaging and investigated using finite element analysis. METHODS: Micro-computed tomographic data established boundaries of internal and external model surfaces to allow finite element analysis. Individually segmented components were modeled based on mechanical properties in precedent literature. The following conditions were considered: axial force directed over the mesial marginal ridge, a mesial or a distal tipping force, a combination of both a torquing force and axial loading, and hydrostatic pressure. The maximum principal stresses were determined. RESULTS: The highest root stress occurred in the cervical third of root surfaces (ie, not apically) under all loading conditions. Importantly, mesial tipping forces resulted in tension on distal roots, whereas distal tipping resulted in tension in the mesial roots. Intracanal pressures produced tensile stress on the internal root canal walls in the cervical third of the root. Stresses were calculated to be less than the fatigue tensile strength of dentin. CONCLUSIONS: Static loading, under the conditions modeled, does not result in stress concentration at the root apices that would cause root fracture under normal masticatory loads. Stress patterns developing from mesial and distal tipping forces help to explain the appearance of vertical root fractures reported in sound nonrestored molar teeth.


Asunto(s)
Diente Molar , Preparación del Conducto Radicular , Análisis del Estrés Dental/métodos , Análisis de Elementos Finitos , Tratamiento del Conducto Radicular , Estrés Mecánico , Raíz del Diente/diagnóstico por imagen
10.
J Anim Sci ; 100(4)2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35213700

RESUMEN

This study aimed to investigate the effect of zearalenone (ZEA) exposure on follicular development in weaned gilts, and its mechanism based on the silent information regulator 1 (SIRT1)/peroxisome proliferator-activated receptor-γ co-activator 1α (PGC-1α) signaling pathway. A total of 32 healthy female weaned piglets (Landrace × Yorkshire × Duroc) with an average body weight of 12.39 ± 0.24 kg were randomly allotted to a basal diet supplemented with 0, 0.15, 1.5, or 3.0 mg/kg ZEA for a 32-d feeding test. Blood and ovarian samples were obtained at the end of the experiment to determine serum toxin concentrations, ovarian histology, and the expressions of proliferating cell nuclear antigen (PCNA) and SIRT1/PGC-1α signaling pathway-related genes. Results showed that the vulva area, serum concentrations of ZEA, α-zearalenol and ß-zearalenol, the thickness of the growing follicular layer, and the diameter of the largest growing follicles, as well as the expressions of SIRT1, PGC-1α, estrogen-related receptor α (ERRα), ATP synthase subunit beta (ATP5B), and PCNA, increased linearly (P < 0.05) with increasing dietary ZEA, whereas the thickness of the primordial follicle layer decreased linearly (P < 0.05). Immunohistochemical analysis showed that the immunoreactive substances of SIRT1 and PGC-1α in the ovaries enhanced with the increasing dietary ZEA (P < 0.05). In addition, the thickness of the growing follicular layer and the diameter of the largest growing follicle were positively correlated with relative mRNA and protein expressions of SIRT1, PGC-1α, ERRα, ATP5B, and PCNA (P < 0.05). However, the thickness of the primordial follicle layer was negatively correlated with the mRNA and protein expression of SIRT1, PGC-1α, ERRα, ATP5B, and PCNA (P < 0.05). Interestingly, the 1.5 mg/kg ZEA treatment had highly hyperplastic follicles, whereas 3.0 mg/kg ZEA resulted in a large number of follicular atresia, which indicated that low-dose ZEA exposure accelerated follicular proliferation, while high-dose ZEA promoted follicular atresia, although the critical value interval needs further confirmation. Results provide a theoretical basis for finding the therapeutic target of ZEA-induced reproductive disorders in weaned gilts.


Zearalenone (ZEA), an estrogenic fusariotoxin, existing in various grains and feedstuffs, could disrupt the endocrine and reproductive systems. However, the underlying mechanisms of ZEA-induced follicular development have not been fully elucidated. This study was to explore the effects and the possible molecular mechanisms of ZEA on follicular development. A total of 32 female weaned piglets were randomly allotted to a basal diet supplemented with 0, 0.15, 1.5, or 3.0 mg/kg ZEA for a 32-d feeding test. The results showed that dietary ZEA increased the vulva area and serum toxin levels, and accelerated follicle development. Moreover, 1.5 and 3.0 mg/kg ZEA changed the expression of proliferating cell nuclear antigen (PCNA) and activated the silent information regulator 1 (SIRT1)/peroxisome proliferator-activated receptor-γ co-activator 1α (PGC-1α) signaling pathway. Meanwhile, ZEA could promote follicle development by regulating PCNA expression through activation of the SIRT1/PGC-1α signaling pathway. The very significant contribution was that the proliferated follicles significantly increased with the increasing ZEA concentration when the ZEA in the diet was less than 1.5 mg/kg; however, atretic follicles significantly increased when the ZEA in the diet was 3.0 mg/kg. This study provides a theoretical basis for finding the therapeutic target of ZEA-induced reproductive disorders in weaned gilts.


Asunto(s)
Zearalenona , Animales , Femenino , Atresia Folicular , Ovario/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , ARN Mensajero/metabolismo , Transducción de Señal , Sirtuina 1/genética , Sirtuina 1/metabolismo , Sirtuina 1/farmacología , Sus scrofa/genética , Porcinos , Zearalenona/farmacología
11.
J Biomech ; 133: 110968, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35139441

RESUMEN

To investigate bone remodelling responses to mandibulectomy, a joint external and internal remodelling algorithm is developed here by incorporating patient-specific longitudinal data. The primary aim of this study is to simulate bone remodelling activity in the conjunction region with a fibula free flap (FFF) reconstruction by correlating with a 28-month clinical follow-up. The secondary goal of this study is to compare the long-term outcomes of different designs of fixation plate with specific screw positioning. The results indicated that the overall bone density decreased over time, except for the Docking Site (namely DS1, a region of interest in mandibular symphysis with the conjunction of the bone union), in which the decrease of bone density ceased later and was followed by bone apposition. A negligible influence on bone remodeling outcome was found for different screw positioning. This study is believed to be the first of its kind for computationally simulating the bone turn-over process after FFF maxillofacial reconstruction by correlating with patient-specific follow-up.


Asunto(s)
Colgajos Tisulares Libres , Reconstrucción Mandibular , Procedimientos de Cirugía Plástica , Remodelación Ósea , Trasplante Óseo , Peroné/cirugía , Colgajos Tisulares Libres/cirugía , Humanos , Mandíbula/fisiología , Mandíbula/cirugía , Reconstrucción Mandibular/métodos , Procedimientos de Cirugía Plástica/métodos , Estudios Retrospectivos
12.
J Mech Behav Biomed Mater ; 125: 104942, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34800891

RESUMEN

OBJECTIVES: The purpose of the present work is to explore the effect of occlusal wear and different types and degrees of caries on the mechanical performance and structural integrity of posterior teeth. METHODS: Three-dimensional (3D) computational models with different combinations of caries parameters (caries location, caries size and caries induced pulp shrinkage) and occlusal wear factors (enamel thickness, marginal ridge height and cuspal slope) were developed and analyzed using the extended finite element method (XFEM) to identify the stress distribution, crack initiation load and ultimate fracture load values. The effect of a non-drilling conservative treatment using resin infiltration on the recovery of mechanical properties of carious molar teeth was also investigated. RESULTS: Presence of fissural caries, worn proximal marginal ridge and decreased enamel thickness due to occlusal wear, imparted a significant negative effect on the crack initiation load value of the lower molar models. Accordingly, models with intact and strong proximal marginal ridge, generally exhibited higher crack initiation loading, regardless of caries size and location. Presence of fissure caries drastically decreased (55%-70%) the crack initiation load compared to sound teeth. The depth of the fissural lesion and the presence of proximal caries did not have a major effect on crack initiation load values. However, increasing the caries size resulted in lower final fracture load values in most of the cases. Accordingly, the groups with combined and connected large fissural and proximal lesions experienced the largest drop in the fracture load values compared to sound tooth models. The worst condition consisted of two connected large proximal and fissural caries with no proximal marginal ridge, in which the fracture load dramatically decreased to only 25% of that for sound teeth with intact marginal ridge. On the other hand, decreased cuspal slope due to occlusal wear and shrinkage of the pulp due to caries appeared to have a protective role and a direct relation with the fracture resistance of the tooth. Following the application of resin infiltration on the carious models, the crack initiation load and the fracture load could recover up to 75% and 90% of the values for the corresponding sound tooth models, respectively. SIGNIFICANCE: Presence of fissural caries, if not treated (either with remineralization, resin infiltration or restoration), can be a major risk factor in the initiation of tooth fracture. When combined with decreased enamel thickness and loss of proximal marginal ridge due to mechanical or chemical wear, the weakening effect of the caries will be amplified specially in teeth with steep cuspal slopes. The application of a conservative treatment with resin infiltration can be an effective approach in prevention of further mechanical failure of demineralized enamel. The findings of this study emphasize the importance of early interventions in the management of caries for the prevention of future cuspal or tooth fracture especially in subjects with higher risk factors for tooth fracture such as caries, wear and bruxism.


Asunto(s)
Atrición Dental , Susceptibilidad a Caries Dentarias , Humanos
13.
Toxins (Basel) ; 13(9)2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34564630

RESUMEN

This study aims to investigate the effects of zearalenone (ZEA) on the localizations and expressions of follicle stimulating hormone receptor (FSHR), luteinizing hormone receptor (LHR), gonadotropin releasing hormone (GnRH) and gonadotropin releasing hormone receptor (GnRHR) in the ovaries of weaned gilts. Twenty 42-day-old weaned gilts were randomly allocated into two groups, and treated with a control diet and a ZEA-contaminated diet (ZEA 1.04 mg/kg), respectively. After 7-day adjustment, gilts were fed individually for 35 days and euthanized for blood and ovarian samples collection before morning feeding on the 36th day. Serum hormones of E2, PRG, FSH, LH and GnRH were determined using radioimmunoassay kits. The ovaries were collected for relative mRNA and protein expression, and immunohistochemical analysis of FSHR, LHR, GnRH and GnRHR. The results revealed that ZEA exposure significantly increased the final vulva area (p < 0.05), significantly elevated the serum concentrations of estradiol, follicle stimulating hormone and GnRH (p < 0.05), and markedly up-regulated the mRNA and protein expressions of FSHR, LHR, GnRH and GnRHR (p < 0.05). Besides, the results of immunohistochemistry showed that the immunoreactive substances of ovarian FSHR, LHR, GnRH and GnRHR in the gilts fed the ZEA-contaminated diet were stronger than the gilts fed the control diet. Our findings indicated that dietary ZEA (1.04 mg/kg) could cause follicular proliferation by interfering with the localization and expression of FSHR, LHR, GnRH and GnRHR, and then affect the follicular development of weaned gilts.


Asunto(s)
Estrógenos no Esteroides/efectos adversos , Micotoxinas/efectos adversos , Ovario/metabolismo , Sus scrofa/genética , Zearalenona/efectos adversos , Animales , Femenino , Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/metabolismo , Receptores de HFE/genética , Receptores de HFE/metabolismo , Receptores de HL/genética , Receptores de HL/metabolismo , Receptores LHRH/genética , Receptores LHRH/metabolismo , Sus scrofa/metabolismo
14.
Dent Mater ; 36(8): 1038-1051, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32534794

RESUMEN

OBJECTIVES: This study aimed to investigate the collective influence of material properties and design parameters on the fracture behavior of monolithic dental crowns. METHODS: Three-dimensional (3D) models (N=90) with different combinations of design parameters (thickness, cusp angle and occlusal notch geometry) and material type (lithium disilicate, feldspar ceramic, zirconia, hybrid resin ceramic and hybrid polymer-infiltrated ceramic) were developed for the failure analysis using extended finite element method (XFEM) to identify the stress distribution, crack initiation load, fracture surface area and fracture pattern. Analytical formulation, in vitro fracture tests and fractographic analysis of dedicated models were also performed to validate the findings of the XFEM simulation. RESULTS: For all material types considered, crowns with a sharp occlusal notch design had a significantly lower fracture resistance against occlusal loading. In most of the models, greater crown thickness and cusp angle resulted in a higher crack initiation load. However, the effect of cusp angle was dominant when the angle was in the low range of 50° for which increasing thickness did not enhance the crack initiation load. SIGNIFICANCE: Comparing the critical load of crack initiation for different models with the maximum biting force revealed that for the studied monolithic materials excluding zirconia, a design with a rounded occlusal notch, 70° cusp angle and medium thickness (1.5mm occlusal) is an optimum combination of design parameters in terms of tooth conservation and fracture resistance. Zirconia crowns exhibited sufficient strength for a more conservative design with less thickness (1.05mm occlusal) and sharper cusp angle (60°).


Asunto(s)
Coronas , Diseño de Prótesis Dental , Cerámica , Porcelana Dental , Fracaso de la Restauración Dental , Análisis del Estrés Dental , Ensayo de Materiales , Circonio
15.
Sci Rep ; 9(1): 4682, 2019 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-30886223

RESUMEN

The aim of this study was to investigate the fracture behaviour of fissural dental enamel under simulated occlusal load in relation to various interacting factors including fissure morphology, cuspal angle and the underlying material properties of enamel. Extended finite element method (XFEM) was adopted here to analyse the fracture load and crack length in tooth models with different cusp angles (ranging from 50° to 70° in 2.5° intervals), fissural morphologies (namely U shape, V shape, IK shape, I shape and Inverted-Y shape) and enamel material properties (constant versus graded). The analysis results showed that fissures with larger curved morphology, such as U shape and IK shape, exhibit higher resistance to fracture under simulated occlusal load irrespective of cusp angle and enamel properties. Increased cusp angle (i.e. lower cusp steepness), also significantly enhanced the fracture resistance of fissural enamel, particularly for the IK and Inverted-Y shape fissures. Overall, the outcomes of this study explain how the interplay of compositional and structural features of enamel in the fissural area contribute to the resistance of the human tooth against masticatory forces. These findings may provide significant indicators for clinicians and technicians in designing/fabricating extra-coronal dental restorations and correcting the cuspal inclinations and contacts during clinical occlusal adjustment.


Asunto(s)
Simulación por Computador , Esmalte Dental/fisiología , Fisuras Dentales/patología , Fijación de Fractura/métodos , Diente Molar/fisiología , Fuerza de la Mordida , Resinas Compuestas/química , Restauración Dental Permanente , Análisis de Elementos Finitos , Humanos , Estrés Mecánico , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA