RESUMEN
When dysregulated, skin fibrosis can lead to a multitude of pathologies. We provide a framework for understanding the wide clinical spectrum, mechanisms, and management of cutaneous fibrosis encompassing a variety of matrix disorders, fibrohistiocytic neoplasms, injury-induced scarring, and autoimmune scleroses. Underlying such entities are common mechanistic pathways that leverage morphogenic signaling, immune activation, and mechanotransduction to modulate fibroblast function. In light of the limited array of available treatments for cutaneous fibrosis, scientific insights have opened new therapeutic and investigative avenues for conditions that still lack effective interventions.
Asunto(s)
Fibrosis , Enfermedades de la Piel , Piel , Humanos , Enfermedades de la Piel/patología , Enfermedades de la Piel/terapia , Piel/patología , AnimalesRESUMEN
INTRODUCTION: The application of artificial intelligence (AI) in healthcare has expanded in recent years, and these tools such as ChatGPT to generate patient-facing information have garnered particular interest. Online cleft lip and palate (CL/P) surgical information supplied by academic/professional (A/P) sources was therefore evaluated against ChatGPT regarding accuracy, comprehensiveness, and clarity. METHODS: 11 plastic and reconstructive surgeons and 29 non-medical individuals blindly compared responses written by ChatGPT or A/P sources to 30 frequently asked CL/P surgery questions. Surgeons indicated preference, determined accuracy, and scored comprehensiveness and clarity. Non-medical individuals indicated preference. Calculations of readability scores were determined using seven readability formulas. Statistical analysis of CL/P surgical online information was performed using paired t-tests. RESULTS: Surgeons, 60.88% of the time, blindly preferred material generated by ChatGPT over A/P sources. Additionally, surgeons consistently indicated that ChatGPT-generated material was more comprehensive and had greater clarity. No significant difference was found between ChatGPT and resources provided by professional organizations in terms of accuracy. Among individuals with no medical background, ChatGPT-generated materials were preferred 60.46% of the time. For materials from both ChatGPT and A/P sources, readability scores surpassed advised levels for patient proficiency across seven readability formulas. CONCLUSION: As the prominence of ChatGPT-based language tools rises in the healthcare space, potential applications of the tools should be assessed by experts against existing high-quality sources. Our results indicate that ChatGPT is capable of producing high-quality material in terms of accuracy, comprehensiveness, and clarity preferred by both plastic surgeons and individuals with no medical background.
RESUMEN
Foreign body response (FBR) is a universal reaction to implanted biomaterial that can affect the function and longevity of the implant. A few studies have attempted to identify targets for treating FBR through the use of single-cell RNA sequencing (scRNA-seq), though the generalizability of these findings from an individual study may be limited. In our study, we perform a meta-analysis of scRNA-seq data from all available FBR mouse studies and integrate these data to identify gene signatures specific to FBR across different models and anatomic locations. We identify subclusters of fibroblasts and macrophages that emerge in response to foreign bodies and characterize their signaling pathways, gene ontology terms, and downstream mediators. The fibroblast subpopulations enriched in the setting of FBR demonstrated significant signaling interactions in the transforming growth factor-beta (TGF-ß) signaling pathway, with known pro-fibrotic mediators identified as top expressed genes in these FBR-derived fibroblasts. In contrast, FBR-enriched macrophage subclusters highly expressed pro-fibrotic and pro-inflammatory mediators downstream of tumor necrosis factor (TNF) signaling. Cell-cell interactions were additionally interrogated using CellChat, with identification of key signaling interactions enriched between fibroblasts and macrophages in FBR. By combining multiple FBR datasets, our meta-analysis study identifies common cell-specific gene signatures enriched in foreign body reactions, providing potential therapeutic targets for patients requiring medical implants across a myriad of devices and indications.
RESUMEN
Ionizing radiation has been pivotal in cancer therapy since its discovery. Despite its therapeutic benefits, IR causes significant acute and chronic complications due to DNA damage and the generation of reactive oxygen species, which harm nucleic acids, lipids, and proteins. While cancer cells are more vulnerable to ionizing radiation due to their inefficiency in repairing damage, healthy cells in the irradiated area also suffer. Various types of cell death occur, including apoptosis, necrosis, pyroptosis, autophagy-dependent cell death, immunogenic cell death, and ferroptosis. Ferroptosis, driven by iron-dependent lipid peroxide accumulation, has been recognized as crucial in radiation therapy's therapeutic effects and complications, with extensive research across various tissues. This review aims to summarize the pathways involved in radiation-related ferroptosis, findings in different organs, and drugs targeting ferroptosis to mitigate its harmful effects.
RESUMEN
BACKGROUND: Radiation-induced fibrosis (RIF) is an important late complication of radiation therapy, and the resulting damaging effects of RIF can significantly impact reconstructive outcomes. There is currently a paucity of effective treatment options available, likely due to the continuing knowledge gap surrounding the cellular mechanisms involved. In this study, detailed analyses of irradiated and non-irradiated human skin samples were performed incorporating histological and single-cell transcriptional analysis to identify novel features guiding development of skin fibrosis following radiation injury. METHODS: Paired irradiated and contralateral non-irradiated skin samples were obtained from six female patients undergoing post-oncologic breast reconstruction. Skin samples underwent histological evaluation, immunohistochemistry, and biomechanical testing. Single-cell RNA sequencing was performed using the 10X single cell platform. Cells were separated into clusters using Seurat in R. The SingleR classifier was applied to ascribe cell type identities to each cluster. Differentially expressed genes characteristic to each cluster were then determined using non-parametric testing. RESULTS: Comparing irradiated and non-irradiated skin, epidermal atrophy, dermal thickening, and evidence of thick, disorganized collagen deposition within the extracellular matrix of irradiated skin were readily appreciated on histology. These histologic features were associated with stiffness that was higher in irradiated skin. Single-cell RNA sequencing revealed six predominant cell types. Focusing on fibroblasts/stromal lineage cells, five distinct transcriptional clusters (Clusters 0-4) were identified. Interestingly, while all clusters were noted to express Cav1, Cluster 2 was the only one to also express Cav2. Immunohistochemistry demonstrated increased expression of Cav2 in irradiated skin, whereas Cav1 was more readily identified in non-irradiated skin, suggesting Cav1 and Cav2 may act antagonistically to modulate fibrotic cellular responses. CONCLUSION: In response to radiation therapy, specific changes to fibroblast subpopulations and enhanced Cav2 expression may contribute to fibrosis. Altogether, this study introduces a novel pathway of caveolin involvement which may contribute to fibrotic development following radiation injury.
Asunto(s)
Caveolina 1 , Fibroblastos , Análisis de la Célula Individual , Piel , Humanos , Femenino , Fibroblastos/efectos de la radiación , Fibroblastos/metabolismo , Caveolina 1/metabolismo , Caveolina 1/genética , Caveolina 1/biosíntesis , Piel/efectos de la radiación , Piel/patología , Piel/metabolismo , Neoplasias de la Mama/radioterapia , Neoplasias de la Mama/patología , Caveolina 2/metabolismo , Caveolina 2/genética , Traumatismos por Radiación/patología , Traumatismos por Radiación/metabolismo , Fibrosis , Persona de Mediana EdadRESUMEN
BACKGROUND: Numerous studies have shown that obesity is a risk factor for postoperative complications following breast reconstruction. Hence, obesity has traditionally been considered a relative contraindication to microsurgical breast reconstruction. In this study, we investigated the impact of obesity on outcomes following microsurgical breast reconstruction. METHODS: A retrospective analysis of 200 consecutive patients who underwent microsurgical breast reconstruction with free abdominal flaps was performed. Subjects were divided into Nonobese (body mass index [BMI] < 30 kg/m2) and Obese (BMI ≥ 30 kg/m2) cohorts. Univariate and multivariate analyses were performed to evaluate differences in patient characteristics, complication rates, and efficiency metrics between the two groups. RESULTS: Of the 200 subjects included in the study, 128 were Nonobese, 72 were Obese. The prevalence of diabetes (3.9 vs. 16.9%, p = 0.002) and hypertension (14.7 vs. 39.4%, p < 0.001) were significantly greater in the Obese cohort. Among unilateral reconstructions, postoperative length of stay (LOS) was longer among Obese patients (3.1 vs. 3.6 days, p = 0.016). Seroma occurred more frequently in Obese patients following bilateral reconstruction (5.7 vs. 0.0%, p = 0.047). Otherwise, there were no significant differences in complication rates between the groups. On multivariate analysis, BMI was not independently associated with complications, LOS, or operative time. CONCLUSION: The improvements in clinical and patient-reported outcomes that have been associated with postmastectomy breast reconstruction do not exclude obese women. This study indicates that microsurgical breast reconstruction can be performed safely and efficiently in patients with obesity.
Asunto(s)
Índice de Masa Corporal , Mamoplastia , Microcirugia , Obesidad , Complicaciones Posoperatorias , Humanos , Mamoplastia/métodos , Femenino , Obesidad/complicaciones , Estudios Retrospectivos , Persona de Mediana Edad , Complicaciones Posoperatorias/epidemiología , Adulto , Factores de Riesgo , Colgajos Tisulares Libres , Resultado del Tratamiento , Neoplasias de la Mama/cirugía , Neoplasias de la Mama/complicaciones , Tiempo de Internación/estadística & datos numéricos , MastectomíaRESUMEN
Topical patch delivery of deferoxamine (DFO) has been studied as a treatment for this fibrotic transformation in irradiated tissue. Efficacy of a novel cream formulation of DFO was studied as a RIF therapeutic in unwounded and excisionally wounded irradiated skin. C57BL/6J mice underwent 30 Gy of radiation to the dorsum followed by 4 weeks of recovery. In a first experiment, mice were separated into six conditions: DFO 50 mg cream (D50), DFO 100 mg cream (D100), soluble DFO injections (DI), DFO 1 mg patch (DP), control cream (Vehicle), and irradiated untreated skin (IR). In a second experiment, excisional wounds were created on the irradiated dorsum of mice and then divided into four treatment groups: DFO 100 mg Cream (W-D100), DFO 1 mg patch (W-DP), control cream (W-Vehicle), and irradiated untreated wounds (W-IR). Laser Doppler perfusion scans, biomechanical testing, and histological analysis were performed. In irradiated skin, D100 improved perfusion compared to D50 or DP. Both D100 and DP enhanced dermal characteristics, including thickness, collagen density and 8-isoprostane staining compared to untreated irradiated skin. D100 outperformed DP in CD31 staining, indicating higher vascular density. Extracellular matrix features of D100 and DP resembled normal skin more closely than DI or control. In radiated excisional wounds, D100 facilitated faster wound healing and increased perfusion compared to DP. The 100 mg DFO cream formulation rescued RIF of unwounded irradiated skin and improved excisional wound healing in murine skin relative to patch delivery of DFO.
Asunto(s)
Deferoxamina , Síndrome de Fibrosis por Radiación , Ratones , Animales , Ratones Endogámicos C57BL , Deferoxamina/farmacología , Deferoxamina/uso terapéutico , Piel , PerfusiónRESUMEN
Skin fibrosis is a clinical problem with devastating impacts but limited treatment options. In the setting of diabetes, insulin administration often causes local dermal fibrosis, leading to a range of clinical sequelae including impeded insulin absorption. Mechanical forces are important drivers of fibrosis and, clinically, physical tension offloading at the skin level using an elastomeric patch significantly reduces wound scarring. However, it is not known whether tension offloading could similarly prevent skin fibrosis in the setting of pro-fibrotic injections. Here, we develop a porcine model using repeated local injections of bleomycin to recapitulate key features of insulin-induced skin fibrosis. Using histologic, tissue ultrastructural, and biomechanical analyses, we show that application of a tension-offloading patch both prevents and rescues existing skin fibrosis from bleomycin injections. By applying single-cell transcriptomic analysis, we find that the fibrotic response to bleomycin involves shifts in myeloid cell dynamics from favoring putatively pro-regenerative to pro-fibrotic myeloid subtypes; in a mechanomodulatory in vitro platform, we show that these shifts are mechanically driven and reversed by exogenous IL4. Finally, using a human foreskin xenograft model, we show that IL4 treatment mitigates bleomycin-induced dermal fibrosis. Overall, this study highlights that skin tension offloading, using an FDA cleared, commercially available patch, could have significant potential clinical benefit for the millions of patients dependent on insulin.
RESUMEN
BACKGROUND: With the growing relevance of artificial intelligence (AI)-based patient-facing information, microsurgical-specific online information provided by professional organizations was compared with that of ChatGPT (Chat Generative Pre-Trained Transformer) and assessed for accuracy, comprehensiveness, clarity, and readability. METHODS: Six plastic and reconstructive surgeons blindly assessed responses to 10 microsurgery-related medical questions written either by the American Society of Reconstructive Microsurgery (ASRM) or ChatGPT based on accuracy, comprehensiveness, and clarity. Surgeons were asked to choose which source provided the overall highest-quality microsurgical patient-facing information. Additionally, 30 individuals with no medical background (ages: 18-81, µ = 49.8) were asked to determine a preference when blindly comparing materials. Readability scores were calculated, and all numerical scores were analyzed using the following six reliability formulas: Flesch-Kincaid Grade Level, Flesch-Kincaid Readability Ease, Gunning Fog Index, Simple Measure of Gobbledygook Index, Coleman-Liau Index, Linsear Write Formula, and Automated Readability Index. Statistical analysis of microsurgical-specific online sources was conducted utilizing paired t-tests. RESULTS: Statistically significant differences in comprehensiveness and clarity were seen in favor of ChatGPT. Surgeons, 70.7% of the time, blindly choose ChatGPT as the source that overall provided the highest-quality microsurgical patient-facing information. Nonmedical individuals 55.9% of the time selected AI-generated microsurgical materials as well. Neither ChatGPT nor ASRM-generated materials were found to contain inaccuracies. Readability scores for both ChatGPT and ASRM materials were found to exceed recommended levels for patient proficiency across six readability formulas, with AI-based material scored as more complex. CONCLUSION: AI-generated patient-facing materials were preferred by surgeons in terms of comprehensiveness and clarity when blindly compared with online material provided by ASRM. Studied AI-generated material was not found to contain inaccuracies. Additionally, surgeons and nonmedical individuals consistently indicated an overall preference for AI-generated material. A readability analysis suggested that both materials sourced from ChatGPT and ASRM surpassed recommended reading levels across six readability scores.
Asunto(s)
Inteligencia Artificial , Microcirugia , Humanos , Adulto , Masculino , Persona de Mediana Edad , Femenino , Cirujanos , Procedimientos de Cirugía Plástica , Anciano , Comprensión , Adolescente , Anciano de 80 o más Años , Adulto Joven , InternetRESUMEN
Local skin flaps are frequently employed for wound closure to address surgical, traumatic, congenital, or oncologic defects. (1) Despite their clinical utility, skin flaps may fail due to inadequate perfusion, ischemia/reperfusion injury (IRI), excessive cell death, and associated inflammatory response. (2) All of these factors contribute to skin flap necrosis in 10-15% of cases and represent a significant surgical challenge. (3, 4) Once flap necrosis occurs, it may require additional surgeries to remove the entire flap or repair the damage and secondary treatments for infection and disfiguration, which can be costly and painful. (5) In addition to employing appropriate surgical techniques and identifying healthy, well-vascularized tissue to mitigate the occurrence of these complications, there is growing interest in exploring cell-based and pharmacologic augmentation options. (6) These agents typically focus on preventing thrombosis and increasing vasodilation and angiogenesis while reducing inflammation and oxidative stress. Agents that modulate cell death pathways such as apoptosis and autophagy have also been investigated. (7) Implementation of drugs and cell lines with potentially beneficial properties have been proposed through various delivery techniques including systemic treatment, direct wound bed or flap injection, and topical application. This review summarizes pharmacologic- and cell-based interventions to augment skin flap viability in animal models, and discusses both translatability challenges facing these therapies and future directions in the field of skin flap augmentation.
Asunto(s)
Daño por Reperfusión , Colgajos Quirúrgicos , Animales , Piel , Complicaciones Posoperatorias , Modelos Animales de Enfermedad , Necrosis/tratamiento farmacológicoRESUMEN
BACKGROUND: A significant gap exists in the translatability of small-animal models to human subjects. One important factor is poor laboratory models involving human tissue. Thus, the authors have created a viable postnatal human skin xenograft model using athymic mice. METHODS: Discarded human foreskins were collected following circumcision. All subcutaneous tissue was removed from these samples sterilely. Host CD-1 nude mice were then anesthetized, and dorsal skin was sterilized. A 1.2-cm-diameter, full-thickness section of dorsal skin was excised. The foreskin sample was then placed into the full-thickness defect in the host mice and sutured into place. Xenografts underwent dermal wounding using a 4-mm punch biopsy after engraftment. Xenografts were monitored for 14 days after wounding and then harvested. RESULTS: At 14 days postoperatively, all mice survived the procedure. Grossly, the xenograft wounds showed formation of a human scar at postoperative day 14. Hematoxylin and eosin and Masson trichome staining confirmed scar formation in the wounded human skin. Using a novel artificial intelligence algorithm using picrosirius red staining, scar formation was confirmed in human wounded skin compared with the unwounded skin. Histologically, CD31 + immunostaining confirmed vascularization of the xenograft. The xenograft exclusively showed human collagen type I, CD26 + , and human nuclear antigen in the human scar without any staining of these human markers in the murine skin. CONCLUSION: The proposed model demonstrates wound healing to be a local response from tissue resident human fibroblasts and allows for reproducible evaluation of human skin wound repair in a preclinical model. CLINICAL RELEVANCE STATEMENT: Radiation-induced fibrosis is a widely prevalent clinical phenomenon without a well-defined treatment at this time. This study will help establish a small-animal model to better understand and develop novel therapeutics to treat irradiated human skin.
Asunto(s)
Cicatriz , Piel , Cicatrización de Heridas , Animales , Humanos , Masculino , Ratones , Inteligencia Artificial , Cicatriz/patología , Modelos Animales de Enfermedad , Xenoinjertos , Ratones Desnudos , Piel/patología , Cicatrización de Heridas/fisiologíaRESUMEN
ABSTRACT: The number of cancer survivors continues to increase because of advances in therapeutic modalities. Along with surgery and chemotherapy, radiotherapy is a commonly used treatment modality in roughly half of all cancer patients. It is particularly helpful in the oncologic treatment of patients with breast, head and neck, and prostate malignancies. Unfortunately, among patients receiving radiation therapy, long-term sequalae are often unavoidable, and there is accumulating clinical evidence suggesting significant radiation-related damage to the vascular endothelium. Ionizing radiation has been known to cause obliterative fibrosis and increased wall thickness in irradiated blood vessels. Clinically, these vascular changes induced by ionizing radiation can pose unique surgical challenges when operating in radiated fields. Here, we review the relevant literature on radiation-induced vascular damage focusing on mechanisms and signaling pathways involved and highlight microsurgical anastomotic outcomes after radiotherapy. In addition, we briefly comment on potential therapeutic strategies, which may have the ability to mitigate radiation injury to the vascular endothelium.
Asunto(s)
Neoplasias , Traumatismos por Radiación , Lesiones del Sistema Vascular , Masculino , Humanos , Lesiones del Sistema Vascular/etiología , Traumatismos por Radiación/etiología , Neoplasias/complicaciones , Endotelio Vascular , Mama/patología , Radioterapia/efectos adversosRESUMEN
Maternal cigarette use is associated with the fetal development of orofacial clefts. Air pollution should be investigated for similar causation. We hypothesize that the incidence of non-syndromic cleft lip with or without palate (NSCLP) and non-syndromic cleft palate (NSCP) would be positively correlated with air pollution concentration. METHODS: The incidence of NSCLP and NSCP per 1000 live births from 2016 to 2020 was extracted from the Centers for Disease Control and Prevention Vital Statistics Database and merged with national reports on air pollution using the Environmental Protection Agency Air Quality Systems annual data. The most commonly reported pollutants were analyzed including benzene, sulfur dioxide (SO2), particulate matter (PM) 2.5, PM 10, ozone (O3), and carbon monoxide (CO). Multivariable negative binomial and Poisson log-linear regression models evaluated the incidence of NSCLP and NSCP as a function of the pollutants, adjusting for race. All p-values are reported with Bonferroni correction. RESULTS: The median NSCLP incidence was 0.22/1000 births, and isolated NSCP incidence was 0.18/1000 births. For NSCLP, SO2 had a coefficient estimate (CE) of 0.60 (95% CI [0.23, 0.98], p < 0.007) and PM 2.5 had a CE of 0.20 (95% CI [0.10, 0.31], p < 0.005). Among isolated NSCP, no pollutants were found to be significantly associated. CONCLUSION: SO2 and PM 2.5 were significantly correlated with increased incidence of NSCLP. The American people and perinatal practitioners should be aware of the connection to allow for risk reduction and in utero screening.
Asunto(s)
Contaminación del Aire , Labio Leporino , Fisura del Paladar , Contaminantes Ambientales , Embarazo , Femenino , Humanos , Labio Leporino/epidemiología , Labio Leporino/etiología , Fisura del Paladar/epidemiología , Fisura del Paladar/etiología , Incidencia , Estudios de Casos y Controles , Contaminación del Aire/efectos adversos , Material Particulado/efectos adversos , Material Particulado/análisisRESUMEN
Background: As visibility of the transgender patient population and utilization of online resources increases, it is imperative that web-based gender-affirming surgery (GAS) materials for patients are readable, accessible, and of high quality. Methods: A search trends analysis was performed to determine frequency of GAS-related searches over time. The top 100 most common results for GAS-related terms were analyzed using six readability formulas. Accessibility of patient-facing GAS sources was determined by categorizing types of search results. Frequency of article types was compared in low- and high-population dense areas. Quality was assigned to GAS web-based sources using the DISCERN score. Results: Search engine trend data demonstrates increasing occurrence of searches related to GAS. Readability scores of the top 100 online sources for GAS were discovered to exceed recommended levels for patient proficiency. Availability of patient-facing online information related to GAS was found to be 60%, followed by information provided by insurance companies (17%). Differences in availability of online resources in varying dense cities were found to be minimal. The average quality of sources determined by the DISCERN score was found to be 3, indicating "potential important shortcomings." Conclusions: Despite increasing demand for web-based GAS information, the readability of online resources related to GAS was found to be significantly greater than the grade level of proficiency recommended for patients. A high number of nonpatient-facing search results appear in response to GAS search terms. Quality sources are still difficult for patients to find, as search results have a high incidence of low-quality resources.
RESUMEN
In adult mammals, skin wounds typically heal by scarring rather than through regeneration. In contrast, "super-healer" Murphy Roths Large (MRL) mice have the unusual ability to regenerate ear punch wounds; however, the molecular basis for this regeneration remains elusive. Here, in hybrid crosses between MRL and non-regenerating mice, we used allele-specific gene expression to identify cis-regulatory variation associated with ear regeneration. Analyzing three major cell populations (immune, fibroblast, and endothelial), we found that genes with cis-regulatory differences specifically in fibroblasts were associated with wound-healing pathways and also co-localized with quantitative trait loci for ear wound-healing. Ectopic treatment with one of these proteins, complement factor H (CFH), accelerated wound repair and induced regeneration in typically fibrotic wounds. Through single-cell RNA sequencing (RNA-seq), we observed that CFH treatment dramatically reduced immune cell recruitment to wounds, suggesting a potential mechanism for CFH's effect. Overall, our results provide insights into the molecular drivers of regeneration with potential clinical implications.
Asunto(s)
Oído , Cicatrización de Heridas , Ratones , Animales , Alelos , Oído/lesiones , Oído/patología , Cicatrización de Heridas/genética , Cicatriz/patología , Ratones Endogámicos , MamíferosRESUMEN
ABSTRACT: Cancer is currently the second leading cause of death in the United States. There is increasing evidence that the tumor microenvironment (TME) is pivotal for tumorigenesis and metastasis. Recently, adipocytes and cancer-associated fibroblasts (CAFs) in the TME have been shown to play a major role in tumorigenesis of different cancers, specifically melanoma. Animal studies have shown that CAFs and adipocytes within the TME help tumors evade the immune system, for example, by releasing chemokines to blunt the effectiveness of the host defense. Although studies have identified that adipocytes and CAFs play a role in tumorigenesis, adipocyte transition to fibroblast within the TME is fairly unknown. This review intends to elucidate the potential that adipocytes may have to transition to fibroblasts and, as part of the TME, a critical role that CAFs may play in affecting the growth and invasion of tumor cells. Future studies that illuminate the function of adipocytes and CAFs in the TME may pave way for new antitumor therapies.
Asunto(s)
Fibroblastos Asociados al Cáncer , Melanoma , Animales , Fibroblastos/patología , Fibroblastos Asociados al Cáncer/patología , Carcinogénesis/patología , Melanoma/patología , Microambiente Tumoral/fisiologíaAsunto(s)
Cicatriz , Mamoplastia , Femenino , Humanos , Cicatriz/etiología , Cicatriz/prevención & control , Mamoplastia/efectos adversos , Mama/cirugíaRESUMEN
Historically believed to be a homogeneous cell type that is often overlooked, fibroblasts are more and more understood to be heterogeneous in nature. Though the mechanisms behind how fibroblasts participate in homeostasis and pathology are just beginning to be understood, these cells are believed to be highly dynamic and play key roles in fibrosis and remodeling. Focusing primarily on fibroblasts within the skin and during wound healing, we describe the field's current understanding of fibroblast heterogeneity in form and function. From differences due to embryonic origins to anatomical variations, we explore the diverse contributions that fibroblasts have in fibrosis and plasticity. Following this, we describe molecular techniques used in the field to provide deeper insights into subpopulations of fibroblasts and their varied roles in complex processes such as wound healing. Limitations to current work are also discussed, with a focus on future directions that investigators are recommended to take in order to gain a deeper understanding of fibroblast biology and to develop potential targets for translational applications in a clinical setting.
RESUMEN
Pancreatic cancer is one of the deadliest forms of cancer with one of the lowest 5-year survival rates of all cancer types. A defining characteristic of pancreatic cancer is the existence of dense desmoplastic stroma that, when exposed to stimuli such as cytokines, growth factors, and chemokines, generate a tumor-promoting environment. Cancer-associated fibroblasts (CAFs) are activated during the progression of pancreatic cancer and are a crucial component of the tumor microenvironment (TME). CAFs are primarily pro-tumorigenic in their activated state and function as promoters of cancer invasion, proliferation, metastasis, and immune modulation. Aided by many signaling pathways, cytokines, and chemokines in the tumor microenvironment, CAFs can originate from many cell types including resident fibroblasts, mesenchymal stem cells, pancreatic stellate cells, adipocytes, epithelial cells, endothelial cells, and other cell types. CAFs are a highly heterogeneous cell type expressing a variety of surface markers and performing a wide range of tumor promoting and inhibiting functions. Single-cell transcriptomic analyses have revealed a high degree of specialization among CAFs. Some examples of CAF subpopulations include myofibrotic CAFs (myCAFs), which exhibit a matrix-producing contractile phenotype; inflammatory CAFs (iCAF) that are classified by their immunomodulating, secretory phenotype; and antigen-presenting CAFs (apCAFs), which have antigen-presenting capabilities and express Major Histocompatibility Complex II (MHC II). Over the last several years, various attempts have been undertaken to describe the mechanisms of CAF-tumor cell interaction, as well as CAF-immune cell interaction, that contribute to tumor proliferation, invasion, and metastasis. Although our understanding of CAF biology in cancer has steadily increased, the extent of CAFs heterogeneity and their role in the pathobiology of pancreatic cancer remains elusive. In this regard, it becomes increasingly evident that further research on CAFs in pancreatic cancer is necessary.
RESUMEN
BACKGROUND: Fibrosis is a complication of both tendon injuries and repairs. We aim to develop a mouse model to assess tendon fibrosis and to identify an antifibrotic agent capable of overcoming tendon fibrosis. METHODS: Adult C57Bl/6 mice underwent a skin incision to expose the Achilles tendon, followed by 50% tendon injury and abrasion with sandpaper. Sham surgeries were conducted on contralateral hindlimbs. Histology and immunofluorescent staining for fibrotic markers (Col1, α-SMA) were used to confirm that the model induced tendon fibrosis. A second experiment was conducted to further examine the role of α-SMA in adhesion formation using α-SMA.mTmG mice (6-8 weeks old) (n=3) with the same injury model. The control group (tendon injury) was compared to the sham group, using the contralateral limb with skin incision only. A second experiment was conducted to further examine the role of α-SMA in adhesion formation using α-SMA.mTmG mice (6-8 weeks old) (n=3) with the same injury model. The control group (tendon injury) was compared to the sham group, using the contralateral limb with skin incision only. Lastly, α-SMA.mTmG mice were randomized to either condition 1. Tendon injury (control group) or 2. Tendon injury with Galectin-3 inhibitor (Gal3i) treatment at time of injury (treatment group). RESULTS: Histological analyses confirmed tendon thickening and collagen deposition after tendon injury and abrasion compared to control. Immunofluorescence showed higher levels of Col1 and α-SMA protein expression after injury compared to sham (*p<0.05). RT-qPCR also demonstrated increased gene expression of Col1 and α-SMA after injury compared to sham (*p<0.05). Gal3 protein expression also increased after injury and co-localized with α-SMA positive fibroblasts surrounding the fibrotic tendon. Gal3i treatment decreased collagen deposition and scarring observed in the treatment group (*p<0.05). Flow cytometry analysis further showed reduced numbers of profibrotic fibroblasts (CD26+) in the treatment compared to the control group (*p<0.05). CONCLUSIONS: Our study provides a reproducible and reliable model to investigate tendon fibrosis. Findings suggest the potential of Gal3i to overcome fibrosis resulting from tendon injuries.