Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 270(Pt 1): 132091, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38718990

RESUMEN

Here, lignin and nano-clay were used to prepare novel composite adsorbents by one-step carbonization without adding activators for radioactive iodine capture. Specially, 1D nano-clay such as halloysite (Hal), palygorskite (Pal) and sepiolite (Sep) were selected as skeleton components, respectively, enzymatic hydrolysis lignin (EHL) as carbon source, lignin based porous carbon/nano-clay composites (ELC-X) were prepared through ultrasonic impregnation, freeze drying, and carbonization. Characterization results indicated lignin based porous carbon (ELC) well coated on the surface of nano-clay, and made its surface areas increase to 252 m2/g. These composites appeared the micro-mesoporous hierarchical structure, considerable N doping and good chemical stability. Results of adsorption experiments showed that the introduction of ELC could well promote iodine vapor uptake of nano-clay, and up to 435.0 mg/g. Meanwhile, the synergistic effect between lignin based carbon and nano-clay was very significant for the adsorption of iodine/n-hexane and iodine ions, their capacity were far exceed those of a single material, respectively. The relevant adsorption kinetic and thermodynamics, and mechanism of ELC-X composites were clarified. This work provided a class of low-cost and environmentally friendly adsorbents for radioactive iodine capture, and opened up ideas for the comprehensive utilization of waste lignin and natural clay minerals.

2.
Int J Biol Macromol ; 221: 25-37, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36063890

RESUMEN

A series of lignin modified hyper-cross-linked nanoporous resins (LMHCRs) had been synthesized from lignin, 4-vinylbenzyl chloride, and divinylbenzene by free radical polymerization reaction and following Friedel-Crafts reaction. The results indicated that Brunauer-Emmett-Teller surface area (SBET) of LMHCRs decreased with different degrees compared with polymeric microspheres (HCRs) without adding lignin. With increasing the feeding amount of lignin, the SBET of LMHCRs first increased and then decreased, and LMHCR-2 had larger SBET (968.52 m2/g) and average pore size (DA: 2.51 nm). Meanwhile, their contact angle continuously decreased from 92.10 to 71.30, indicating the enhanced polarity. Interestingly, the adsorption capacity of p-nitrophenol (PNP) on all LMHCRs were obviously higher than rhodamine B, and LMHCR-2 had the largest capacity ratio (3.780) of PNP to rhodamine B or other organic dyes at 298 K. Specifically, the Qm of PNP on LMHCR-2 reached the largest value (492.1 mg/g) due to its suitable porosity and favorable surface polarity. LMHCR-2 also displayed excellent CO2 capture (86.5 mg/g) at 273 K and 1 bar and good reusability. This study provided an efficient route to modify hyper-cross-linked resin by using the residual lignin, and showed the enhanced adsorption performance.


Asunto(s)
Lignina , Nanoporos , Adsorción , Dióxido de Carbono , Agua
3.
Chemosphere ; 288(Pt 1): 132499, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34626649

RESUMEN

Lignin is a natural O-containing aromatic amorphous polymers from the residues of biorefinery and industrial papermaking, it can derive lots of aromatic phenol chemicals used as industrial raw materials by an efficient depolymerization, and then produce synthetic polymers. Here, we selected six aromatic units from the liquid products of lignin depolymerization, and tried to prepare diversified O-rich hyper-cross-linked polymers (HCPs) by one-pot Friedel-Crafts alkylation reaction for CO2 and iodine vapor capture. HCP1, HCP2, and HCP3 microspheres possessed similar porous structure with Brunauer-Emmett-Teller (BET) surface areas (SBET) of 14.1-20.6 m2/g and high O content (26.34-30.68 wt%), while HCP4, HCP5, and HCP6 were composed of many bulks with 3D networks structure, and showed larger SBET of 15.4-246.9 m2/g and relatively low O content (18.48-26.38 wt%). The results indicated that the chemical position and quantities of substituent groups (methoxy and alkyl) into lignin-derived units had evident impact on their morphology and textural parameters. These HCPs exhibited considerable CO2 uptake (64.1 mg/g) and selectivity (35.2) at 273 K, and high iodine vapor uptake (192.3 wt%). Moreover, the performance analysis implied that the SBET and pore volume of these HCPs had not played the dominated roles in the CO2 and I2 adsorption, while their pore size distribution, O-functional groups, and electron density will be more important for the capture of the both. This study will offer a facile synthesis of O-rich polymer microsphere adsorbents based on the green and sustainable lignin.


Asunto(s)
Yodo , Lignina , Adsorción , Dióxido de Carbono , Microesferas , Oxígeno , Fenoles , Polímeros , Porosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA