Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(18)2024 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-39338867

RESUMEN

With the rapid development of mobile edge computing (MEC) and wireless power transfer (WPT) technologies, the MEC-WPT system makes it possible to provide high-quality data processing services for end users. However, in a real-world WPT-MEC system, the channel gain decreases with the transmission distance, leading to "double near and far effect" in the joint transmission of wireless energy and data, which affects the quality of the data processing service for end users. Consequently, it is essential to design a reasonable system model to overcome the "double near and far effect" and make reasonable scheduling of multi-dimensional resources such as energy, communication and computing to guarantee high-quality data processing services. First, this paper designs a relay collaboration WPT-MEC resource scheduling model to improve wireless energy utilization efficiency. The optimization goal is to minimize the normalization of the total communication delay and total energy consumption while meeting multiple resource constraints. Second, this paper imports a BK-means algorithm to complete the end terminals cluster to guarantee effective energy reception and adapts the whale optimization algorithm with adaptive mechanism (AWOA) for mobile vehicle path-planning to reduce energy waste. Third, this paper proposes an immune differential enhanced deep deterministic policy gradient (IDDPG) algorithm to realize efficient resource scheduling of multiple resources and minimize the optimization goal. Finally, simulation experiments are carried out on different data, and the simulation results prove the validity of the designed scheduling model and proposed IDDPG.

2.
Sensors (Basel) ; 23(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37448043

RESUMEN

In the environment of unknown mutual coupling, many works on direction-of-arrival (DOA) estimation with sensor array are prone to performance degradation or even failure. Moreover, there are few literatures on off-grid direction finding using regularized sparse recovery technology. Therefore, the scenario of off-grid DOA estimation in sensor array with unknown mutual coupling is investigated, and then a reweighted off-grid Sparse Spectrum Fitting (Re-OGSpSF) approach is developed in this article. Inspired by the selection matrix, an undisturbed array output is formed to remove the unknown mutual coupling effect. Subsequently, a refined off-grid SpSF (OGSpSF) recovery model is structured by integrating the off-grid error term obtained from the first-order Taylor approximation of the higher-order term into the underlying on-grid sparse representation model. After that, a novel Re-OGSpSF framework is formulated to recover the sparse vectors, where a weighted matrix is developed by the MUSIC-like spectrum function to enhance the solution's sparsity. Ultimately, off-grid DOA estimation can be realized with the help of the recovered sparse vectors. Thanks to the off-grid representation and reweighted strategy, the proposed method can effectively and efficiently achieve high-precision continuous DOA estimation, making it favorable for real-time direction finding. The simulation results validate the superiority of the proposed method.


Asunto(s)
Música , Localización de Sonidos , Simulación por Computador , Sistemas de Computación , Registros
3.
Sensors (Basel) ; 20(3)2020 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-32033075

RESUMEN

A novel unitary estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithm, for the joint direction of arrival (DOA) and range estimation in a monostatic multiple-input multiple-output (MIMO) radar with a frequency diverse array (FDA), is proposed. Firstly, by utilizing the property of Centro-Hermitian of the received data, the extended real-valued data is constructed to improve estimation accuracy and reduce computational complexity via unitary transformation. Then, to avoid the coupling between the angle and range in the transmitting array steering vector, the DOA is estimated by using the rotation invariance of the receiving subarrays. Thereafter, an automatic pairing method is applied to estimate the range of the target. Since phase ambiguity is caused by the phase periodicity of the transmitting array steering vector, a removal method of phase ambiguity is proposed. Finally, the expression of Cramér-Rao Bound (CRB) is derived and the computational complexity of the proposed algorithm is compared with the ESPRIT algorithm. The effectiveness of the proposed algorithm is verified by simulation results.

4.
PeerJ Comput Sci ; 5: e178, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-33816831

RESUMEN

Scientific collaboration has become a common behaviour in academia. Various recommendation strategies have been designed to provide relevant collaborators for the target scholars. However, scholars are no longer satisfied with the acquainted collaborator recommendations, which may narrow their horizons. Serendipity in the recommender system has attracted increasing attention from researchers in recent years. Serendipity traditionally denotes the faculty of making surprising discoveries. The unexpected and valuable scientific discoveries in science such as X-rays and penicillin may be attributed to serendipity. In this paper, we design a novel recommender system to provide serendipitous scientific collaborators, which learns the serendipity-biased vector representation of each node in the co-author network. We first introduce the definition of serendipitous collaborators from three components of serendipity: relevance, unexpectedness, and value, respectively. Then we improve the transition probability of random walk in DeepWalk, and propose a serendipity-biased DeepWalk, called Seren2vec. The walker jumps to the next neighbor node with the proportional probability of edge weight in the co-author network. Meanwhile, the edge weight is determined by the three indices in definition. Finally, Top-N serendipitous collaborators are generated based on the cosine similarity between scholar vectors. We conducted extensive experiments on the DBLP data set to validate our recommendation performance, and the evaluations from serendipity-based metrics show that Seren2vec outperforms other baseline methods without much loss of recommendation accuracy.

5.
Sensors (Basel) ; 16(4): 445, 2016 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-27023562

RESUMEN

Secondary Users (SUs) are allowed to use the temporarily unused licensed spectrum without disturbing Primary Users (PUs) in Cognitive Radio Ad Hoc Networks (CRAHNs). Existing architectures for CRAHNs impose energy-consuming Cognitive Radios (CRs) on SUs. However, the advanced CRs will increase energy cost for their cognitive functionalities, which is undesirable for the battery powered devices. A new architecture referred to as spectral Requirement-based CRAHN (RCRAHN) is proposed to enhance energy efficiency for CRAHNs in this paper. In RCRAHNs, only parts of SUs are equipped with CRs. SUs equipped with CRs are referred to as Cognitive Radio Users (CRUs). To further enhance energy efficiency of CRAHNs, we aim to select minimum CRUs to sense available spectrum. A non-linear programming problem is mathematically formulated under the constraints of energy efficiency and real-time. Considering the NP-hardness of the problem, a framework of a heuristic algorithm referred to as Sensitive Secondary Users Selection (SSUS) was designed to compute the near-optimal solutions. The simulation results demonstrate that SSUS not only improves the energy efficiency, but also achieves satisfied performances in end-to-end delay and communication reliability.

6.
Sensors (Basel) ; 16(3)2016 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-26985896

RESUMEN

In health monitoring systems, the base station (BS) and the wearable sensors communicate with each other to construct a virtual multiple input and multiple output (VMIMO) system. In real applications, the signal that the BS received is a distributed source because of the scattering, reflection, diffraction and refraction in the propagation path. In this paper, a 2D direction-of-arrival (DOA) estimation algorithm for incoherently-distributed (ID) and coherently-distributed (CD) sources is proposed based on multiple VMIMO systems. ID and CD sources are separated through the second-order blind identification (SOBI) algorithm. The traditional estimating signal parameters via the rotational invariance technique (ESPRIT)-based algorithm is valid only for one-dimensional (1D) DOA estimation for the ID source. By constructing the signal subspace, two rotational invariant relationships are constructed. Then, we extend the ESPRIT to estimate 2D DOAs for ID sources. For DOA estimation of CD sources, two rational invariance relationships are constructed based on the application of generalized steering vectors (GSVs). Then, the ESPRIT-based algorithm is used for estimating the eigenvalues of two rational invariance matrices, which contain the angular parameters. The expressions of azimuth and elevation for ID and CD sources have closed forms, which means that the spectrum peak searching is avoided. Therefore, compared to the traditional 2D DOA estimation algorithms, the proposed algorithm imposes significantly low computational complexity. The intersecting point of two rays, which come from two different directions measured by two uniform rectangle arrays (URA), can be regarded as the location of the biosensor (wearable sensor). Three BSs adopting the smart antenna (SA) technique cooperate with each other to locate the wearable sensors using the angulation positioning method. Simulation results demonstrate the effectiveness of the proposed algorithm.

7.
ScientificWorldJournal ; 2013: 463828, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24453856

RESUMEN

Each element in the conformal array has a different pattern, which leads to the performance deterioration of the conventional high resolution direction-of-arrival (DOA) algorithms. In this paper, a joint frequency and two-dimension DOA (2D-DOA) estimation algorithm for conformal array are proposed. The delay correlation function is used to suppress noise. Both spatial and time sampling are utilized to construct the spatial-time matrix. The frequency and 2D-DOA estimation are accomplished based on parallel factor (PARAFAC) analysis without spectral peak searching and parameter pairing. The proposed algorithm needs only four guiding elements with precise positions to estimate frequency and 2D-DOA. Other instrumental elements can be arranged flexibly on the surface of the carrier. Simulation results demonstrate the effectiveness of the proposed algorithm.


Asunto(s)
Algoritmos , Modelos Teóricos
8.
ScientificWorldJournal ; 2013: 589675, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24501582

RESUMEN

Due to the polarization mismatch of the antenna, the received signal suffers from energy loss. The conventional beamforming algorithms could not be applied to the conformal array because of the varying curvature. In order to overcome the energy loss of the received signal, a novel joint polarization-space matched filtering algorithm for cylindrical conformal array is proposed. First, the snapshot data model of the conformal polarization sensitive array is analyzed. Second, the analytical expression of polarization sensitive array beamforming is derived. Linearly constrained minimum variance (LCMV) beamforming technique is facilitated for the cylindrical conformal array. Third, the idea of joint polarization-space matched filtering is presented, and the principle of joint polarization-space matched filtering is discussed in detail. Theoretical analysis and computer simulation results verify that the conformal polarization sensitive array is more robust than the ordinary conformal array. The proposed algorithm can improve the performance when signal and interference are too close. It can enhance the signal-to-noise ratio (SNR) by adjusting the polarization of the elements of the conformal array, which matches the polarization of the incident signal.


Asunto(s)
Algoritmos , Procesamiento de Señales Asistido por Computador , Simulación por Computador , Ingeniería , Modelos Teóricos , Relación Señal-Ruido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...