Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2400790, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741381

RESUMEN

Heterotopic ossification (HO), the pathological formation of bone within soft tissues such as tendon and muscle, is a notable complication resulting from severe injury. While soft tissue injury is necessary for HO development, the specific molecular pathology responsible for trauma-induced HO remains a mystery. The previous study detected abnormal autophagy function in the early stages of tendon HO. Nevertheless, it remains to be determined whether autophagy governs the process of HO generation. Here, trauma-induced tendon HO model is used to investigate the relationship between autophagy and tendon calcification. In the early stages of tenotomy, it is observed that autophagic flux is significantly impaired and that blocking autophagic flux promoted the development of more rampant calcification. Moreover, Gt(ROSA)26sor transgenic mouse model experiments disclosed lysosomal acid dysfunction as chief reason behind impaired autophagic flux. Stimulating V-ATPase activity reinstated both lysosomal acid functioning and autophagic flux, thereby reversing tendon HO. This present study demonstrates that autophagy-lysosomal dysfunction triggers HO in the stages of tendon injury, with potential therapeutic targeting implications for HO.

2.
J Extracell Vesicles ; 13(4): e12425, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38594791

RESUMEN

Heterotopic ossification (HO) comprises the abnormal formation of ectopic bone in extraskeletal soft tissue. The factors that initiate HO remain elusive. Herein, we found that calcified apoptotic vesicles (apoVs) led to increased calcification and stiffness of tendon extracellular matrix (ECM), which initiated M2 macrophage polarization and HO progression. Specifically, single-cell transcriptome analyses of different stages of HO revealed that calcified apoVs were primarily secreted by a PROCR+ fibroblast population. In addition, calcified apoVs enriched calcium by annexin channels, absorbed to collagen I via electrostatic interaction, and aggregated to produce calcifying nodules in the ECM, leading to tendon calcification and stiffening. More importantly, apoV-releasing inhibition or macrophage deletion both successfully reversed HO development. Thus, we are the first to identify calcified apoVs from PROCR+ fibroblasts as the initiating factor of HO, and might serve as the therapeutic target for inhibiting pathological calcification.


Asunto(s)
Vesículas Extracelulares , Osificación Heterotópica , Humanos , Receptor de Proteína C Endotelial , Vesículas Extracelulares/patología , Osificación Heterotópica/patología , Osificación Heterotópica/terapia , Matriz Extracelular , Fibroblastos
3.
ACS Omega ; 9(12): 13951-13959, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38559958

RESUMEN

Nanosensor-based patient exhaled breath detection is a practical and effective way to detect lung cancer early. In this paper, a Ru-doped MoS2 monolayer (Ru-MoS2) is proposed as a promising novel biosensor based on first-principles theory for the detection of three typical early stage lung cancer exhaled volatile organic compounds, namely, C3H4O, C3H6O, and C5H8. Replacement of a S atom in the MoS2 monolayer with a Ru dopant atom to form a stable Ru-MoS2 monolayer with a binding energy of -4.78 eV is further demonstrated by the thermostability and chemical stability analysis as well as improving the adsorption performance of the system for three VOCs. The adsorption configuration structures, adsorption properties, and electronic behavior of the Ru-MoS2 monolayer are investigated by electron deformation density and density of states analysis to gain a comprehensive understanding of the physicochemical properties as sensing material. The results show that the adsorption energies of the Ru-MoS2 monolayer for C3H4O, C3H6O, and C5H8 are 3.42, -1.53, and -2.80 eV, respectively, all of which are chemisorption with excellent adsorption performance. The sensitivities for the three VOCs could be up to 1.09, 140.50, and 5.90, respectively, and the band structure and work function further elucidate the sensing mechanism of the Ru-MoS2 monolayer as a resistive gas sensor. The type and concentration of these exhaled breaths may reflect changes in the patient's physiological and biochemical status and may serve as a probe for the diagnosis of lung cancer. The results in this work could provide a guidance for researchers to explore the practical applications in the early diagnosis of lung cancer by gas sensors.

5.
Cell Death Dis ; 15(4): 300, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684648

RESUMEN

The treatment of hepatocellular carcinoma (HCC) is particularly challenging due to the inherent tumoral heterogeneity and easy resistance towards chemotherapy and immunotherapy. Arsenic trioxide (ATO) has emerged as a cytotoxic agent effective for treating solid tumors, including advanced HCC. However, its effectiveness in HCC treatment remains limited, and the underlying mechanisms are still uncertain. Therefore, this study aimed to characterize the effects and mechanisms of ATO in HCC. By evaluating the susceptibilities of human and murine HCC cell lines to ATO treatment, we discovered that HCC cells exhibited a range of sensitivity to ATO treatment, highlighting their inherent heterogeneity. A gene signature comprising 265 genes was identified to distinguish ATO-sensitive from ATO-insensitive cells. According to this signature, HCC patients have also been classified and exhibited differential features of ATO response. Our results showed that ATO treatment induced reactive oxygen species (ROS) accumulation and the activation of multiple cell death modalities, including necroptosis and ferroptosis, in ATO-sensitive HCC cells. Meanwhile, elevated tumoral immunogenicity was also observed in ATO-sensitive HCC cells. Similar effects were not observed in ATO-insensitive cells. We reported that ATO treatment induced mitochondrial injury and mtDNA release into the cytoplasm in ATO-sensitive HCC tumors. This subsequently activated the cGAS-STING-IFN axis, facilitating CD8+ T cell infiltration and activation. However, we found that the IFN pathway also induced tumoral PD-L1 expression, potentially antagonizing ATO-mediated immune attack. Additional anti-PD1 therapy promoted the anti-tumor response of ATO in ATO-sensitive HCC tumors. In summary, our data indicate that heterogeneous ATO responses exist in HCC tumors, and ATO treatment significantly induces immunogenic cell death (ICD) and activates the tumor-derived mtDNA-STING-IFN axis. These findings may offer a new perspective on the clinical treatment of HCC and warrant further study.


Asunto(s)
Trióxido de Arsénico , Carcinoma Hepatocelular , Muerte Celular Inmunogénica , Neoplasias Hepáticas , Proteínas de la Membrana , Nucleotidiltransferasas , Trióxido de Arsénico/farmacología , Trióxido de Arsénico/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Humanos , Animales , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones , Muerte Celular Inmunogénica/efectos de los fármacos , Línea Celular Tumoral , Interferones/metabolismo , Transducción de Señal/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Ratones Endogámicos C57BL
6.
Nat Microbiol ; 9(3): 712-726, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38443574

RESUMEN

Cell division is fundamental to all cellular life. Most archaea depend on either the prokaryotic tubulin homologue FtsZ or the endosomal sorting complex required for transport for division but neither system has been robustly characterized. Here, we show that three of the four photosynthesis reaction centre barrel domain proteins of Haloferax volcanii (renamed cell division proteins B1/2/3 (CdpB1/2/3)) play important roles in cell division. CdpB1 interacts directly with the FtsZ membrane anchor SepF and is essential for cell division, whereas deletion of cdpB2 and cdpB3 causes a major and a minor division defect, respectively. Orthologues of CdpB proteins are also involved in cell division in other haloarchaea, indicating a conserved function of these proteins. Phylogenetic analysis shows that photosynthetic reaction centre barrel proteins are widely distributed among archaea and appear to be central to cell division in most if not all archaea.


Asunto(s)
Haloferax volcanii , Proteínas del Complejo del Centro de Reacción Fotosintética , Filogenia , División Celular , Haloferax volcanii/genética , Fotosíntesis
7.
Nat Biomed Eng ; 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491329

RESUMEN

Dental calculi can cause gingival bleeding and periodontitis, yet the mechanism underlying the formation of such mineral build-ups, and in particular the role of the local microenvironment, are unclear. Here we show that the formation of dental calculi involves bacteria in local mature biofilms converting the DNA in neutrophil extracellular traps (NETs) from being degradable by the enzyme DNase I to being degradation resistant, promoting the nucleation and growth of apatite. DNase I inhibited NET-induced mineralization in vitro and ex vivo, yet plasma DNases were ineffective at inhibiting ectopic mineralization in the oral cavity in rodents. The topical application of the DNA-intercalating agent chloroquine in rodents fed with a dental calculogenic diet reverted NET DNA to its degradable form, inhibiting the formation of calculi. Our findings may motivate therapeutic strategies for the reduction of the prevalence of the deposition of bacteria-driven calculi in the oral cavity.

8.
Physiol Rep ; 12(3): e15939, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38316422

RESUMEN

Recurrent spontaneous abortion (RSA) is a serious condition that adversely affects women's health. Differentially expressed proteins (DEPs) in plasma of patients experiencing RSA is helpful to find new therapeutic targets and identified with mass spectrometry. In 57 DEPs, 21 were upregulated and 36 were downregulated in RSA. Gene ontology analyses indicated that identified DEPs were associated with cell proliferation, including significantly downregulated insulin-like growth factor binding protein 2 (IGFBP2). Immunohistochemical result using clinical decidual tissues also showed that IGFBP2 expression was significantly decreased in RSA trophoblasts. Cell proliferation assay indicated that IGFBP2 treatment increased the proliferation and mRNA expressions of PCNA and Ki67 in trophoblast cells. Transcriptome sequencing experiments and Kyoto Encyclopedia of Genes and Genomes analyses revealed that gene expression for components in PI3K-Akt pathway in trophoblasts was significantly upregulated following IGFBP2 treatment. To confirm bioinformatics findings, we did cell-based experiments and found that treatment of inhibitors for insulin-like growth factor (IGF)-1 receptor-PI3K-Akt pathway significantly reduced IGFBP2-induced trophoblast cell proliferation and mRNA expressions of PCNA and Ki67. Our findings suggest that IGFBP2 may increase trophoblast proliferation through the PI3K-Akt signaling pathway to affect pregnancy outcomes and that IGFBP2 may be a new target for future research and treatment of RSA.


Asunto(s)
Aborto Habitual , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina , Proteínas Proto-Oncogénicas c-akt , Femenino , Humanos , Embarazo , Aborto Habitual/metabolismo , Proliferación Celular , Antígeno Ki-67/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proyectos Piloto , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/metabolismo , Trofoblastos/metabolismo , Proteína 2 de Unión a Factor de Crecimiento Similar a la Insulina/genética
9.
Adv Mater ; 36(16): e2311659, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38175183

RESUMEN

Enamel repair is crucial for restoring tooth function and halting dental caries. However, contemporary research often overlooks the retention of organic residues within the repair layer, which hinders the growth of dense crystals and compromises the properties of the repaired enamel. During the maturation of natural enamel, the organic matrix undergoes enzymatic processing to facilitate further crystal growth, resulting in a highly mineralized tissue. Inspired by this process, a biomimetic self-maturation mineralization system is developed, comprising ribonucleic acid-stabilized amorphous calcium phosphate (RNA-ACP) and ribonuclease (RNase). The RNA-ACP induces initial mineralization in the form of epitaxial crystal growth, while the RNase present in saliva automatically triggers a biomimetic self-maturation process. The mechanistic study further indicates that RNA degradation prompts conformational rearrangement of the RNA-ACP, effectively excluding the organic matter introduced earlier. This exclusion process promotes lateral crystal growth, resulting in the generation of denser enamel-like apatite crystals that are devoid of organic residues. This strategy of eliminating organic residues from enamel crystals enhances the mechanical and physiochemical properties of the repaired enamel. The present study introduces a conceptual biomimetic mineralization strategy for effective enamel repair in clinical practice and offers potential insights into the mechanisms of biomineral formation.


Asunto(s)
Biomimética , Fosfatos de Calcio , Caries Dental , Humanos , ARN , Ribonucleasas , Esmalte Dental
10.
Sci Total Environ ; 916: 170271, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38262248

RESUMEN

The global warming and other environmental problems caused by SF6 emissions can be reduced due to the widespread use of eco-friendly insulating gas, perfluoropentanone (C5F10O). However, there is an exposure risk to populations in areas near C5F10O equipment, so it is important to clarify its biosafety and pathogenesis before large-scale application. In this paper, histopathology, transcriptomics, 4D-DIA proteomics, and LC-MS metabolomics of rats exposed to 2000 ppm and 6000 ppm C5F10O are analyzed to reveal the mechanisms of toxicity and health risks. Histopathological shows that inflammatory cell infiltration, epithelial cell hyperplasia, and alveolar atrophy accompanied by alveolar wall thickening are present in both low-dose and high-dose groups. Analysis of transcriptomic and 4D-DIA proteomic show that Cell cycle and DNA replication can be activated by both 2000 ppm and 6000 ppm C5F10O to induce cell proliferation. In addition, it also leads to the activation of pathways such as Antigen processing and presentation, Cell adhesion molecules and Complement and coagulation cascades, T cell receptor signal path, Th1 and T cell receptor signal path, Th1 and Th2 cell differentiation, complement and coagulation cascades. Finally, LC-MS metabolomics analysis confirms that the metabolic pathways associated with glycerophospholipids, arachidonic acid, and linoleic acid are disrupted and become more severe with increasing doses. The mechanism of lung toxicity caused by C5F10O is systematically expounded based on the multi-omics analysis and provided biosafety references for further promotion and application of C5F10O.


Asunto(s)
Enfermedades Pulmonares , Proteómica , Ratas , Animales , Pulmón , Receptores de Antígenos de Linfocitos T
11.
Bioact Mater ; 34: 37-50, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38173842

RESUMEN

Calcification of cartilage by hydroxyapatite is a hallmark of osteoarthritis and its deposition strongly correlates with the severity of osteoarthritis. However, no effective strategies are available to date on the prevention of hydroxyapatite deposition within the osteoarthritic cartilage and its role in the pathogenesis of this degenerative condition is still controversial. Therefore, the present work aims at uncovering the pathogenic mechanism of intra-cartilaginous hydroxyapatite in osteoarthritis and developing feasible strategies to counter its detrimental effects. With the use of in vitro and in vivo models of osteoarthritis, hydroxyapatite crystallites deposited in the cartilage are found to be phagocytized by resident chondrocytes and processed by the lysosomes of those cells. This results in lysosomal membrane permeabilization (LMP) and release of cathepsin B (CTSB) into the cytosol. The cytosolic CTSB, in turn, activates NOD-like receptor protein-3 (NLRP3) inflammasomes and subsequently instigates chondrocyte pyroptosis. Inhibition of LMP and CTSB in vivo are effective in managing the progression of osteoarthritis. The present work provides a conceptual therapeutic solution for the prevention of osteoarthritis via alleviation of lysosomal destabilization.

12.
Phys Med Biol ; 68(24)2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37983915

RESUMEN

Objective.Head motion correction (MC) is an essential process in brain positron emission tomography (PET) imaging. We have used the Polaris Vicra, an optical hardware-based motion tracking (HMT) device, for PET head MC. However, this requires attachment of a marker to the subject's head. Markerless HMT (MLMT) methods are more convenient for clinical translation than HMT with external markers. In this study, we validated the United Imaging Healthcare motion tracking (UMT) MLMT system using phantom and human point source studies, and tested its effectiveness on eight18F-FPEB and four11C-LSN3172176 human studies, with frame-based region of interest (ROI) analysis. We also proposed an evaluation metric, registration quality (RQ), and compared it to a data-driven evaluation method, motion-corrected centroid-of-distribution (MCCOD).Approach.UMT utilized a stereovision camera with infrared structured light to capture the subject's real-time 3D facial surface. Each point cloud, acquired at up to 30 Hz, was registered to the reference cloud using a rigid-body iterative closest point registration algorithm.Main results.In the phantom point source study, UMT exhibited superior reconstruction results than the Vicra with higher spatial resolution (0.35 ± 0.27 mm) and smaller residual displacements (0.12 ± 0.10 mm). In the human point source study, UMT achieved comparable performance as Vicra on spatial resolution with lower noise. Moreover, UMT achieved comparable ROI values as Vicra for all the human studies, with negligible mean standard uptake value differences, while no MC results showed significant negative bias. TheRQevaluation metric demonstrated the effectiveness of UMT and yielded comparable results to MCCOD.Significance.We performed an initial validation of a commercial MLMT system against the Vicra. Generally, UMT achieved comparable motion-tracking results in all studies and the effectiveness of UMT-based MC was demonstrated.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Tomografía de Emisión de Positrones , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Tomografía de Emisión de Positrones/métodos , Cabeza/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Movimiento (Física) , Fantasmas de Imagen , Algoritmos , Movimiento
13.
Plant Physiol Biochem ; 203: 108076, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37832366

RESUMEN

The MADS-box transcription factor APETELA1 (AP1) is crucially important for reproductive developmental processes. The function of AP1 and the classic LFY-AP1 interaction in woody plants are not widely known. Here, the OfAP1-a gene from the continuously flowering plant Osmanthus fragrans 'Sijigui' was characterized, and its roles in regulating flowering time, petal number robustness and floral organ identity were determined using overexpression in Arabidopsis thaliana and Nicotiana tabacum. The expression of OfAP1-a was significantly induced by low ambient temperature and was upregulated with the floral transition process. Ectopic expression OfAP1-a revealed its classic function in flowering and flower ABC models. The expression of OfAP1-a is inhibited by LEAFY (OfLFY) through direct promoter binding, as confirmed by yeast one-hybrid and dual luciferase assays. Arabidopsis plants overexpressing OfAP1-a exhibited accelerated flowering and altered floral organ identities. Moreover, OfAP1-a-overexpressing plants displayed variable petal numbers. Likewise, the overexpression of OfLFY in Arabidopsis and Nicotiana altered petal number robustness and inflorescence architecture, partially by regulating native AP1 in transformed plants. Furthermore, we performed RNA-seq analysis of transgenic Nicotiana plants. DEGs were identified by transcriptome analysis, and we found that the expression of several floral homeotic genes was altered in both OfAP1-a and OfLFY-overexpressing transgenic lines. Our results suggest that OfAP1-a may play important roles during floral transition and development in response to ambient temperature. OfAP1-a functions as a petal number modulator and may directly activate a subset of flowers to regulate floral organ formation. OfAP1-a and OfLFY mutually regulate the expression of each other and coregulate genes that might be involved in these phenotypes related to flowering. The results provide valuable data for understanding the function of the LFY-AP1 module in the reproductive process and shaping floral structures in woody plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Temperatura , Factores de Transcripción/genética , Proteínas de Arabidopsis/genética , Fenotipo , Flores/metabolismo , Plantas Modificadas Genéticamente/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
14.
Mol Biol Rep ; 50(11): 9107-9119, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37749345

RESUMEN

BACKGROUND: Chimonanthus praecox and Chimonanthus salicifolius are closely related species that diverged approximately six million years ago. While both C. praecox and C. salicifolius could withstand brief periods of low temperatures of - 15 °C. Their flowering times are different, C. praecox blooms in early spring, whereas C. salicifolius blooms in autumn. The SBP-box (SQUAMOSA promoter-binding protein) is a plant-specific gene family that plays a crucial vital role in regulating plant flowering. Although extensively studied in various plants, the SBP gene family remains uncharacterized in Calycanthaceae. METHODS AND RESULTS: We conducted genome-wide identification of SBP genes in both C. praecox and C. salicifolius and comprehensively characterized the chromosomal localization, gene structure, conserved motifs, and domains of the identified SBP genes. In total, 15 and 18 SBP genes were identified in C. praecox and C. salicifolius, respectively. According to phylogenetic analysis, the SBP genes from Arabidopsis, C. praecox, and C. salicifolius were clustered into eight groups. Analysis of the gene structure and conserved protein motifs showed that SBP proteins of the same subfamily have similar motif structures. The expression patterns of SBP genes were analyzed using transcriptome data. The results revealed that more than half of the genes exhibited lower expression levels in leaves than in flowers, suggesting their potential involvement in the flower development process and may be linked to the winter and autumn flowering of C. praecox and C. salicifolius. CONCLUSION: Thirty-three SBPs were identified in C. praecox and C. salicifolius. The evolutionary characteristics and expression patterns were examined in this study. These results provide valuable information to elucidate the evolutionary relationships of the SBP family and help determine the functional characteristics of the SBP genes in subsequent studies.


Asunto(s)
Arabidopsis , Calycanthaceae , Calycanthaceae/genética , Calycanthaceae/química , Calycanthaceae/metabolismo , Filogenia , Flores/metabolismo , Hojas de la Planta/metabolismo , Genes de Plantas , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/metabolismo
15.
Adv Sci (Weinh) ; 10(26): e2301763, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37395388

RESUMEN

Osteoarthritis is a degenerative disease characterized by abnormal neurovascularization at the osteochondral junctions, the regulatory mechanisms of which remain poorly understood. In the present study, a murine osteoarthritic model with augmented neurovascularization at the osteochondral junction is used to examine this under-evaluated facet of degenerative joint dysfunction. Increased extracellular RNA (exRNA) content is identified in neurovascularized osteoarthritic joints. It is found that the amount of exRNA is positively correlated with the extent of neurovascularization and the expression of vascular endothelial growth factor (VEGF). In vitro binding assay and molecular docking demonstrate that synthetic RNAs bind to VEGF via electrostatic interactions. The RNA-VEGF complex promotes the migration and function of endothelial progenitor cells and trigeminal ganglion cells. The use of VEGF and VEGFR2 inhibitors significantly inhibits the amplification of the RNA-VEGF complex. Disruption of the RNA-VEGF complex by RNase and polyethyleneimine reduces its in vitro activities, as well as prevents excessive neurovascularization and osteochondral deterioration in vivo. The results of the present study suggest that exRNAs may be potential targets for regulating nerve and blood vessel ingrowth under physiological and pathological joint conditions.


Asunto(s)
Osteoartritis , Factor A de Crecimiento Endotelial Vascular , Ratones , Animales , Factor A de Crecimiento Endotelial Vascular/metabolismo , Simulación del Acoplamiento Molecular , Osteoartritis/metabolismo , ARN/genética
16.
Mol Omics ; 19(8): 653-667, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37357557

RESUMEN

Shexiang Baoxin Pill (SBP) has an excellent therapeutic effect on atherosclerosis (AS), but the combinational mechanisms of SBP against AS remain unclear. This study aimed to investigate the combinational mechanisms of SBP against AS by comprehensive network pharmacology and fecal metabolomic analysis. Bufonis venenum, one of the adjuvant medicines in SBP, is an animal medicine with a narrow therapeutic window. Considering animal protection, we evaluated the anti-AS effect of SBP without BV (SBP-BV) using ApoE-/- mouse models, culture cells, and metabolomic methods. Our data suggested that SBP showed remarkable anti-atherosclerotic effects through multiple targets and multiple pathways, while each component in SBP played different roles in their synergistic effect. Notably, SBP-BV showed comparable effects with SBP in the treatment of AS. Both SBP and SBP-BV could reduce cholesterol uptake in RAW264.7 cells and prevent the occurrence and development of AS in WD-induced ApoE-/- mice by attenuating the atherosclerotic plaque area, and reducing inflammatory cytokines and cholesterol levels in vivo. Our finding might provide new insights into the research and development of new anti-atherosclerosis drugs.


Asunto(s)
Aterosclerosis , Farmacología en Red , Ratones , Animales , Aterosclerosis/tratamiento farmacológico , Penicilinas , Colesterol , Apolipoproteínas E
17.
bioRxiv ; 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37090588

RESUMEN

Cell division is fundamental to all cellular life. Most of the archaea employ one of two alternative division machineries, one centered around the prokaryotic tubulin homolog FtsZ and the other around the endosomal sorting complex required for transport (ESCRT). However, neither of these mechanisms has been thoroughly characterized in archaea. Here, we show that three of the four PRC (Photosynthetic Reaction Center) barrel domain proteins of Haloferax volcanii (renamed Cell division proteins B1/2/3 (CdpB1/2/3)), play important roles in division. CdpB1 interacts directly with the FtsZ membrane anchor SepF and is essential for division, whereas deletion of cdpB2 and cdpB3 causes a major and a minor division defect, respectively. Orthologs of CdpB proteins are also involved in cell division in other haloarchaea. Phylogenetic analysis shows that PRC barrel proteins are widely distributed among archaea, including the highly conserved CdvA protein of the crenarchaeal ESCRT-based division system. Thus, diverse PRC barrel proteins appear to be central to cell division in most if not all archaea. Further study of these proteins is expected to elucidate the division mechanisms in archaea and their evolution.

18.
Am J Med ; 136(8): 773-779.e4, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37075877

RESUMEN

BACKGROUND: Although tooth loss is widely recognized as a typical sign of aging, whether it is associated with accelerated aging, and to what extent diet quality mediates this association are unknown. METHODS: Data were collected from the National Health and Nutrition Examination Survey. The missing tooth counts were recorded as the number of edentulous sites. Phenotypic accelerated aging was calculated using 9 routine clinical chemistry biomarkers and chronological age. Healthy Eating Index 2015 (HEI-2015) score was used to evaluate diet quality. Multivariate logistic regression and linear regression were used to analyze the association between tooth loss and accelerated aging. Mediation analyses were used to examine the mediation role of diet quality in the association. RESULTS: The association between tooth loss and accelerated aging was confirmed. The highest quartile of tooth loss showed a positive association with accelerated aging (ß=1.090; 95% confidence interval, 0.555 to 1.625; P < .001). Diet quality decreased with increase number of missing teeth and showed a negative association with accelerated aging. Mediation analysis suggested that the HEI-2015 score partially mediated the association between tooth loss and accelerated aging (proportion of mediation: 5.302%; 95% confidence interval, 3.422% to 7.182%; P < .001). Plant foods such as fruits and vegetables were considered the key mediating food. CONCLUSIONS: The association between tooth loss and accelerated aging, as well as the partially mediating role of dietary quality in this association was confirmed. These findings suggested that more attention should be paid to the population with severe tooth loss and the changes of their dietary quality.


Asunto(s)
Pérdida de Diente , Humanos , Encuestas Nutricionales , Pérdida de Diente/epidemiología , Pérdida de Diente/complicaciones , Dieta , Envejecimiento , Aceleración
19.
Carbohydr Polym ; 310: 120738, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36925258

RESUMEN

Chondroitin sulfate (CS) is an important extracellular matrix component of mineralized tissues. It participates in biomineralization, osteoblast differentiation and promotes bone tissue repair in vitro. However, the mechanism in which CS functions is unclear. Accordingly, an in-depth investigation of how CS participates in mineralization was conducted in the present study. Chondroitin sulfate was found to directly induce intrafibrillar mineralization of the collagen matrix. The mineralization outcome was dependent on whether CS remained free in the extracellular matrix or bound to core proteins; mineralization only occurred when CS existed in a free state. The efficacy of mineralization appeared to increase with ascending CS concentration. This discovery spurred the authors to identify the cause of heterotopic ossification in the Achilles tendon. Chondroitin sulfate appeared to be a therapeutic target for the management of diseases associated with heterotopic calcification. A broader perspective was presented on the applications of CS in tissue engineering.


Asunto(s)
Biomineralización , Sulfatos de Condroitina , Sulfatos de Condroitina/farmacología , Huesos/metabolismo , Colágeno/metabolismo , Matriz Extracelular/metabolismo
20.
Int J Ophthalmol ; 16(3): 427-433, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36935788

RESUMEN

AIM: To investigate the risk and protective factors associated with the retinal nerve fiber layer defect (RNFLD) in a Chinese adult population. METHODS: This study was a cross-sectional population-based investigation including employees and retirees of a coal mining company in Kailuan City, Hebei Province. All the study participants underwent a comprehensive systemic and ophthalmic examination. RNFLD was diagnosed on fundus photographs. Binary logistic regression was used to investigate the risk and protective factors associated with the RNFLD. RESULTS: The community-based study included 14 440 participants. There were 10 473 participants in our study, including 7120 males (68.0%) and 3353 females (32.0%). The age range was 45-108y, averaging 59.56±8.66y. Totally 568 participants had RNFLD and the prevalence rate was 5.42%. A higher prevalence of RNFLD was associated with older age [P<0.001, odds ratio (OR): 1.032; 95% confidence interval (CI): 1.018-1.046], longer axial length (P=0.010, OR: 1.190; 95%CI: 1.042-1.359), hypertension (P=0.007, OR: 0.639; 95%CI: 0.460-0.887), and diabetes mellitus (P=0.019, OR: 0.684; 95%CI: 0.499-0.939). The protective factors of RNFLD were visual acuity (P=0.038, OR: 0.617; 95%CI: 0.391-0.975), and central anterior chamber depth (P=0.046, OR: 0.595; 95%CI: 0.358-0.990). CONCLUSION: In our cross-sectional community-based study, with an age range of 45-108y, RNFLD is associated with older age, longer axial length, hypertension, and diabetes mellitus. The protective factors of RNFLD are visual acuity and central anterior chamber depth. These can help to predict and evaluate RNFLD related diseases and identify high-risk populations early.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA