Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
2.
Sci Rep ; 13(1): 13912, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37626085

RESUMEN

The development of new therapies against SARS-CoV-2 is required to extend the toolkit of intervention strategies to combat the global pandemic. In this study, hyperimmune plasma from sheep immunised with whole spike SARS-CoV-2 recombinant protein has been used to generate candidate products. In addition to purified IgG, we have refined candidate therapies by removing non-specific IgG via affinity binding along with fragmentation to eliminate the Fc region to create F(ab')2 fragments. These preparations were evaluated for in vitro activity and demonstrated to be strongly neutralising against a range of SARS-CoV-2 strains, including Omicron B2.2. In addition, their protection against disease manifestations and viral loads were assessed using a hamster SARS-CoV-2 infection model. Results demonstrated protective effects of both IgG and F(ab')2, with the latter requiring sequential dosing to maintain in vivo activity due to rapid clearance from the circulation.


Asunto(s)
COVID-19 , SARS-CoV-2 , Cricetinae , Animales , Ovinos , Inmunización Pasiva , Cinética , Inmunoglobulina G
3.
J Gen Virol ; 104(7)2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37432877

RESUMEN

The 2',5'- oligoadenylate synthetase (OAS) - ribonuclease L (RNAseL) - phosphodiesterase 12 (PDE12) pathway is an essential interferon-induced effector mechanism against RNA virus infection. Inhibition of PDE12 leads to selective amplification of RNAseL activity in infected cells. We aimed to investigate PDE12 as a potential pan-RNA virus antiviral drug target and develop PDE12 inhibitors that elicit antiviral activity against a range of viruses. A library of 18 000 small molecules was screened for PDE12 inhibitor activity using a fluorescent probe specific for PDE12. The lead compounds (CO-17 or CO-63) were tested in cell-based antiviral assays using encephalomyocarditis virus (EMCV), hepatitis C virus (HCV), dengue virus (DENV), West Nile virus (WNV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in vitro. Cross reactivity of PDE12 inhibitors with other PDEs and in vivo toxicity were measured. In EMCV assays, CO-17 potentiated the effect of IFNα by 3 log10. The compounds were selective for PDE12 when tested against a panel of other PDEs and non-toxic at up to 42 mg kg-1 in rats in vivo. Thus, we have identified PDE12 inhibitors (CO-17 and CO-63), and established the principle that inhibitors of PDE12 have antiviral properties. Early studies suggest these PDE12 inhibitors are well tolerated at the therapeutic range, and reduce viral load in studies of DENV, HCV, WNV and SARS-CoV-2 in human cells and WNV in a mouse model.


Asunto(s)
COVID-19 , Virus ARN , Humanos , Ratones , Animales , Ratas , Antivirales/farmacología , SARS-CoV-2 , Interferón-alfa , Virus de la Encefalomiocarditis , Hidrolasas Diéster Fosfóricas
5.
Int J Mol Sci ; 24(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37298476

RESUMEN

The efflux pumps, beside the class D carbapenem-hydrolysing enzymes (CHLDs), are being increasingly investigated as a mechanism of carbapenem resistance in Acinetobacter baumannii. This study investigates the contribution of efflux mechanism to carbapenem resistance in 61 acquired blaCHDL-genes-carrying A. baumannii clinical strains isolated in Warsaw, Poland. Studies were conducted using phenotypic (susceptibility testing to carbapenems ± efflux pump inhibitors (EPIs)) and molecular (determining expression levels of efflux operon with regulatory-gene and whole genome sequencing (WGS)) methods. EPIs reduced carbapenem resistance of 14/61 isolates. Upregulation (5-67-fold) of adeB was observed together with mutations in the sequences of AdeRS local and of BaeS global regulators in all 15 selected isolates. Long-read WGS of isolate no. AB96 revealed the presence of AbaR25 resistance island and its two disrupted elements: the first contained a duplicate ISAba1-blaOXA-23, and the second was located between adeR and adeA in the efflux operon. This insert was flanked by two copies of ISAba1, and one of them provides a strong promoter for adeABC, elevating the adeB expression levels. Our study for the first time reports the involvement of the insertion of the ΔAbaR25-type resistance island fragment with ISAba1 element upstream the efflux operon in the carbapenem resistance of A. baumannii.


Asunto(s)
Acinetobacter baumannii , Antibacterianos , Antibacterianos/farmacología , Antibacterianos/metabolismo , Acinetobacter baumannii/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carbapenémicos/farmacología , Carbapenémicos/metabolismo , Mutación , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana Múltiple/genética
6.
ACS Cent Sci ; 8(5): 527-545, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35647275

RESUMEN

Heparan sulfate (HS) is a cell surface polysaccharide recently identified as a coreceptor with the ACE2 protein for the S1 spike protein on SARS-CoV-2 virus, providing a tractable new therapeutic target. Clinically used heparins demonstrate an inhibitory activity but have an anticoagulant activity and are supply-limited, necessitating alternative solutions. Here, we show that synthetic HS mimetic pixatimod (PG545), a cancer drug candidate, binds and destabilizes the SARS-CoV-2 spike protein receptor binding domain and directly inhibits its binding to ACE2, consistent with molecular modeling identification of multiple molecular contacts and overlapping pixatimod and ACE2 binding sites. Assays with multiple clinical isolates of SARS-CoV-2 virus show that pixatimod potently inhibits the infection of monkey Vero E6 cells and physiologically relevant human bronchial epithelial cells at safe therapeutic concentrations. Pixatimod also retained broad potency against variants of concern (VOC) including B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 (Delta), and B.1.1.529 (Omicron). Furthermore, in a K18-hACE2 mouse model, pixatimod significantly reduced SARS-CoV-2 viral titers in the upper respiratory tract and virus-induced weight loss. This demonstration of potent anti-SARS-CoV-2 activity tolerant to emerging mutations establishes proof-of-concept for targeting the HS-Spike protein-ACE2 axis with synthetic HS mimetics and provides a strong rationale for clinical investigation of pixatimod as a potential multimodal therapeutic for COVID-19.

7.
Antiviral Res ; 203: 105332, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35533779

RESUMEN

Antibodies against SARS-CoV-2 are important to generate protective immunity, with convalescent plasma one of the first therapies approved. An alternative source of polyclonal antibodies suitable for upscaling would be more amendable to regulatory approval and widespread use. In this study, sheep were immunised with SARS-CoV-2 whole spike protein or one of the subunit proteins: S1 and S2. Once substantial antibody titres were generated, plasma was collected and samples pooled for each antigen. Non-specific antibodies were removed via affinity-purification to yield candidate products for testing in a hamster model of SARS-CoV-2 infection. Affinity-purified polyclonal antibodies to whole spike, S1 and S2 proteins were evaluated for in vitro for neutralising activity against SARS-CoV-2 Wuhan-like virus (Australia/VIC01/2020) and a recent variant of concern, B.1.1.529 BA.1 (Omicron), antibody-binding, complement fixation and phagocytosis assays were also performed. All antibody preparations demonstrated an effect against SARS-CoV-2 disease in the hamster model of challenge, with those raised against the S2 subunit providing the most promise. A rapid, cost-effective therapy for COVID-19 was developed which provides a source of highly active immunoglobulin specific to SARS-CoV-2 with multi-functional activity.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , Animales , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales , COVID-19/terapia , Análisis Costo-Beneficio , Inmunización Pasiva , SARS-CoV-2 , Ovinos , Glicoproteína de la Espiga del Coronavirus , Sueroterapia para COVID-19
8.
mSphere ; 7(3): e0016622, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35491843

RESUMEN

Bacterial vaginosis (BV) is a dysbiosis of the vaginal microbiome, characterized by low levels of lactobacilli and overgrowth of a diverse group of bacteria, associated with higher risk of a variety of infections, surgical complications, cancer, and preterm birth (PTB). Despite the lack of a consistently applicable etiology, Prevotella spp. are often associated with both BV and PTB, and Pr. bivia has known symbiotic relationships with both Peptostreptococcus anaerobius and Gardnerella vaginalis. Higher risk of PTB can also be predicted by a composite of metabolites linked to bacterial metabolism, but their specific bacterial source remains poorly understood. Here, we characterize diversity of metabolic strategies among BV-associated bacteria and lactobacilli and the symbiotic metabolic relationships between Pr. bivia and its partners and show how these influence the availability of metabolites associated with BV/PTB and/or pro- or anti-inflammatory immune responses. We confirm a commensal relationship between Pe. anaerobius and Pr. bivia, refining its mechanism, which sustains a substantial increase in acetate production. In contrast, the relationship between Pr. bivia and G. vaginalis strains, with sequence variant G2, is mutualistic, with outcome dependent on the metabolic strategy of the G. vaginalis strain. Taken together, our data show how knowledge of inter- and intraspecies metabolic diversity and the effects of symbiosis may refine our understanding of the mechanism and approach to risk prediction in BV and/or PTB. IMPORTANCE Bacterial vaginosis (BV) is the most common vaginal infection for women of childbearing age. Although 50% of women with BV do not have any symptoms, it approximately doubles the risk of catching a sexually transmitted infection and also increases the risk of preterm delivery in pregnant women. Recent studies of the vaginal microbiota have suggested that variation between species in the same genus or between strains of the same species explain better or poorer outcomes or at least some coexistence patterns for bacteria of concern. We tested whether such variation is manifested in how vaginal bacteria grow in the laboratory and whether and how they may share nutrients. We then showed that this affected the overall cocktail of chemicals they produce, including bacterially derived chemicals that we have previously shown are linked to a higher risk of preterm delivery.


Asunto(s)
Nacimiento Prematuro , Vaginosis Bacteriana , Bacterias , Femenino , Humanos , Recién Nacido , Lactobacillus , Espectroscopía de Resonancia Magnética , Embarazo , Simbiosis , Vaginosis Bacteriana/microbiología
9.
BMC Microbiol ; 22(1): 113, 2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-35468722

RESUMEN

BACKGROUND: Silver ions have potent broad-spectrum antimicrobial activity and are widely incorporated into a variety of products to limit bacterial growth. In Enterobacteriaceae, decreased silver susceptibility has been mapped to two homologous operons; the chromosomally located cus operon and the plasmid based sil operon. Here we characterised the mechanisms and clinical impact of induced silver tolerance in Klebsiella pneumoniae. RESULTS: In K. pneumoniae carriage of the sil operon alone does not give elevated silver tolerance. However, when exposed to increasing concentrations of silver nitrate (AgNO3), K. pneumoniae strains which contain the sil operon, will preferentially mutate SilS, resulting in overexpression of the genes encoding the RND efflux pump silCBA. Those strains which do not carry the sil operon also adapt upon exposure to increasing silver concentrations through mutations in another two-component regulator CusS. Secondary mutations leading to disruption of the outer membrane porin OmpC were also detected. Both routes result in a high level of silver tolerance with MIC's of >512 mg/L. When exposed to a high concentration of AgNO3 (400 mg/L), only strains that contained the sil operon were able to survive, again through mutations in SilS. The AgNO3 adapted strains were also resistant to killing by challenge with several clinical and commercial silver containing dressings. CONCLUSIONS: This study shows that K. pneumoniae has two possible pathways for development of increased silver tolerance but that the sil operon is preferentially mutated. This operon is essential when K. pneumoniae is exposed to high concentrations of silver. The potential clinical impact on wound management is shown by the increased survivability of these adapted strains when exposed to several silver impregnated dressings. This would make infections with these strains more difficult to treat and further limits our therapeutic options.


Asunto(s)
Proteínas Bacterianas/genética , Klebsiella pneumoniae , Porinas , Iones , Klebsiella pneumoniae/genética , Pruebas de Sensibilidad Microbiana , Mutación , Porinas/genética
10.
J Med Microbiol ; 71(3)2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35324422

RESUMEN

Introduction. We are becoming increasingly reliant on the effectiveness of biocides to combat the spread of Gram-negative multi-drug-resistant (MDR) pathogens, including Klebsiella pneumoniae. It has been shown that chlorhexidine exposure can lead to mutations in the efflux pump repressor regulators SmvR and RamR, but the contribution of each individual efflux pump to biocide tolerance is unknown.Hypothesis. Multiple efflux pumps, including SmvA and AcrAB-TolC, are involved in increased tolerance to biocides. However, strains with upregulated AcrAB-TolC caused by biocide exposure are more problematic due to their increased MDR phenotype.Aim. To investigate the role of AcrAB-TolC in the tolerance to several biocides, including chlorhexidine, and the potential threat of cross-resistance to antibiotics through increased expression of this efflux pump.Methodology. Antimicrobial susceptibility testing was performed on K. pneumoniae isolates with ramR mutations selected for after exposure to chlorhexidine, as well as transposon mutants in components and regulators of AcrAB-TolC. RTPCR was used to detect the expression levels of this pump after biocide exposure. Strains from the globally important ST258 clade were compared for genetic differences in acrAB-TolC and its regulators and for phenotypic differences in antimicrobial susceptibility.Results. Cross-resistance to antimicrobials was observed following mutations in ramR. Exposure to chlorhexidine led to increased expression of acrA and its activator ramA, and transposon mutants in AcrAB-TolC have increased susceptibility to several biocides, including chlorhexidine. Variations in ramR within the ST258 clade led to an increase in tolerance to certain biocides, although this was strain dependent. One strain, MKP103, that had increased levels of biocide tolerance showed a unique mutation in ramR that was reflected in enhanced expression of acrA and ramA. MKP103 transposon variants were able to further enhance their tolerance to specific biocides with mutations affecting SmvA.Conclusions. Biocide tolerance in K. pneumoniae is dependent upon several components, with increased efflux through AcrAB-TolC being an important one.


Asunto(s)
Clorhexidina , Desinfectantes , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Clorhexidina/farmacología , Desinfectantes/farmacología , Klebsiella
11.
Microbiology (Reading) ; 168(11)2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36748532

RESUMEN

AbstractWith an increase in the number of isolates resistant to multiple antibiotics, infection control has become increasingly important to help combat the spread of multi-drug-resistant pathogens. An important component of this is through the use of disinfectants and antiseptics (biocides). Antibiotic resistance has been well studied in bacteria, but little is known about potential biocide resistance genes and there have been few reported outbreaks in hospitals resulting from a breakdown in biocide effectiveness. Development of increased tolerance to biocides has been thought to be more difficult due to the mode of action of biocides which affect multiple cellular targets compared with antibiotics. Very few genes which contribute towards increased biocide tolerance have been identified. However, the majority of those that have are components or regulators of different efflux pumps or genes which modulate membrane function/modification. This review will examine the role of efflux in increased tolerance towards biocides, focusing on cationic biocides and heavy metals against Gram-negative bacteria. As many efflux pumps which are upregulated by biocide presence also contribute towards an antimicrobial resistance phenotype, the role of these efflux pumps in cross-resistance to both other biocides and antibiotics will be explored.


Asunto(s)
Desinfectantes , Desinfectantes/farmacología , Bacterias/genética , Antibacterianos/farmacología , Transporte Biológico , Farmacorresistencia Microbiana , Farmacorresistencia Bacteriana , Pruebas de Sensibilidad Microbiana
12.
Commun Biol ; 4(1): 1058, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34504285

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogen capable of stably adapting to the antiseptic octenidine by an unknown mechanism. Here we characterise this adaptation, both in the laboratory and a simulated clinical setting, and identify a novel antiseptic resistance mechanism. In both settings, 2 to 4-fold increase in octenidine tolerance was associated with stable mutations and a specific 12 base pair deletion in a putative Tet-repressor family gene (smvR), associated with a constitutive increase in expression of the Major Facilitator Superfamily (MFS) efflux pump SmvA. Adaptation to higher octenidine concentrations led to additional stable mutations, most frequently in phosphatidylserine synthase pssA and occasionally in phosphatidylglycerophosphate synthase pgsA genes, resulting in octenidine tolerance 16- to 256-fold higher than parental strains. Metabolic changes were consistent with mitigation of oxidative stress and altered plasma membrane composition and order. Mutations in SmvAR and phospholipid synthases enable higher level, synergistic tolerance of octenidine.


Asunto(s)
Antibacterianos/metabolismo , Iminas/metabolismo , Pseudomonas aeruginosa/genética , Piridinas/metabolismo , Transporte Biológico , Genes Bacterianos/genética , Pruebas de Sensibilidad Microbiana , Mutación , Pseudomonas aeruginosa/metabolismo
13.
Int J Mol Sci ; 22(5)2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33801221

RESUMEN

Acinetobacter baumannii is an important cause of nosocomial infections worldwide. The elucidation of the carbapenem resistance mechanisms of hospital strains is necessary for the effective treatment and prevention of resistance gene transmission. The main mechanism of carbapenem resistance in A. baumannii is carbapenemases, whose expressions are affected by the presence of insertion sequences (ISs) upstream of blaCHDL genes. In this study, 61 imipenem-nonsusceptible A. baumannii isolates were characterized using phenotypic (drug-susceptibility profile using CarbaAcineto NP) and molecular methods. Pulsed field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST) methods were utilized for the genotyping. The majority of isolates (59/61) carried one of the following acquired blaCHDL genes: blaOXA-24-like (39/59), ISAba1-blaOXA-23-like (14/59) or ISAba3-blaOXA-58-like (6/59). Whole genome sequence analysis of 15 selected isolates identified the following intrinsic blaOXA-66 (OXA-51-like; n = 15) and acquired class D ß-lactamases (CHDLs): ISAba1-blaOXA-23 (OXA-23-like; n = 7), ISAba3-blaOXA-58-ISAba3 (OXA-58-like; n = 2) and blaOXA-72 (OXA-24-like; n = 6). The isolates were classified into 21 pulsotypes using PFGE, and the representative 15 isolates were found to belong to sequence type ST2 of the Pasteur MLST scheme from the global IC2 clone. The Oxford MLST scheme revealed the diversity among these studied isolates, and identified five sequence types (ST195, ST208, ST208/ST1806, ST348 and ST425). CHDL-type carbapenemases and insertion elements upstream of the blaCHDL genes were found to be widespread among Polish A. baumannii clinical isolates, and this contributed to their carbapenem resistance.


Asunto(s)
Infecciones por Acinetobacter/tratamiento farmacológico , Acinetobacter baumannii/efectos de los fármacos , Proteínas Bacterianas/genética , Carbapenémicos/farmacología , Elementos Transponibles de ADN , Farmacorresistencia Bacteriana/genética , beta-Lactamasas/genética , Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/aislamiento & purificación , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Humanos , Tipificación de Secuencias Multilocus , beta-Lactamasas/metabolismo
14.
Appl Environ Microbiol ; 87(10)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33674437

RESUMEN

Octenidine-based disinfection products are becoming increasingly popular for infection control of multidrug-resistant (MDR) Gram-negative isolates. When a waste trap was removed from a hospital and allowed to acclimatize in a standard tap rig in our laboratory, it was shown that Klebsiella pneumoniae, Pseudomonas aeruginosa, and Citrobacter and Enterobacter spp. were readily isolated. This study aimed to understand the potential impact of prolonged exposure to low doses of a commercial product containing octenidine on these bacteria. Phenotypic and genotypic analyses showed that P. aeruginosa strains had increased tolerance to octenidine, which was characterized by mutations in the Tet repressor SmvR. Enterobacter species demonstrated increased tolerance to many other cationic biocides, although not octenidine, as well as the antibiotics ciprofloxacin, chloramphenicol, and ceftazidime, through mutations in another Tet repressor, RamR. Citrobacter species with mutations in RamR and MarR were identified following octenidine exposure, and this is linked to development of resistance to ampicillin, piperacillin, and chloramphenicol, as well as an increased MIC for ciprofloxacin. Isolates were able to retain fitness, as characterized by growth, biofilm formation, and virulence in Galleria mellonella, after prolonged contact with octenidine, although there were strain-to-strain differences. These results demonstrate that continued low-level octenidine exposure in a simulated sink trap environment selects for mutations that affect smvR It may also promote microbial adaptation to other cationic biocides and cross-resistance to antibiotics, while not incurring a fitness cost. This suggests that hospital sink traps may act as a reservoir for more biocide-tolerant organisms.IMPORTANCE Multidrug-resistant (MDR) strains of bacteria are a major clinical problem, and several reports have linked outbreaks of MDR bacteria with bacterial populations in hospital sinks. Biocides such as octenidine are used clinically in body washes and other products, such as wound dressings for infection control. Therefore, increased tolerance to these biocides would be detrimental to infection control processes. Here, we exposed bacterial populations originally from hospital sink traps to repeated dosing with an octenidine-containing product over several weeks and observed how particular species adapted. We found mutations in genes related to biocide and antibiotic susceptibility, which resulted in increased tolerance, although this was species dependent. Bacteria that became more tolerant to octenidine also showed no loss of fitness. This shows that prolonged octenidine exposure has the potential to promote microbial adaptation in the environment and that hospital sink traps may act as a reservoir for increased biocide- and antibiotic-tolerant organisms.


Asunto(s)
Antiinfecciosos/farmacología , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana/genética , Enterobacteriaceae/efectos de los fármacos , Proteínas de Transporte de Membrana/genética , Pseudomonas aeruginosa/efectos de los fármacos , Piridinas/farmacología , Enterobacteriaceae/genética , Enterobacteriaceae/crecimiento & desarrollo , Hospitales , Iminas , Mutación , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crecimiento & desarrollo , Eliminación de Residuos Líquidos
15.
Bioorg Med Chem ; 30: 115900, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33352389

RESUMEN

We report the application of a covalent probe based on a d-glucosamine scaffold for the profiling of the bacterial pathogen Klebsiella pneumoniae. Incubation of K. pneumoniae lysates with the probe followed by electrophoretic separation and in-gel fluorescence detection allowed the generation of strain-specific signatures and the differentiation of a carbapenem-resistant strain. The labelling profile of the probe was independent of its anomeric configuration and included several low-abundance proteins not readily detectable by conventional protein staining. Initial target identification experiments by mass spectrometry suggest that target proteins include several carbohydrate-recognising proteins, which indicates that the sugar scaffold may have a role for target recognition.


Asunto(s)
Proteínas Bacterianas/genética , Colorantes Fluorescentes/química , Glucosamina/química , Klebsiella pneumoniae/genética , Relación Dosis-Respuesta a Droga , Colorantes Fluorescentes/síntesis química , Perfilación de la Expresión Génica , Glucosamina/síntesis química , Klebsiella pneumoniae/aislamiento & purificación , Estructura Molecular , Relación Estructura-Actividad
17.
J Med Chem ; 63(13): 6941-6958, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32515951

RESUMEN

It is urgent to find new antibiotic classes with activity against multidrug-resistant (MDR) Gram-negative pathogens as the pipeline of antibiotics is essentially empty. Modified pyrrolobenzodiazepines with a C8-linked aliphatic heterocycle provide a new class of broad-spectrum antibacterial agents with activity against MDR Gram-negative bacteria, including WHO priority pathogens. The structure-activity relationship established that the third ring was particularly important for Gram-negative activity. Minimum inhibitory concentrations for the lead compounds ranged from 0.125 to 2 mg/L for MDR Gram-negative, excluding Pseudomonas aeruginosa, and between 0.03 and 1 mg/L for MDR Gram-positive species. The lead compounds were rapidly bactericidal with >5 log reduction in viable count within 4 h for Acinetobacter baumannii and Klebsiella pneumoniae. The lead compound inhibited DNA gyrase in gel-based assays, with an IC50 of 3.16 ± 1.36 mg/L. This study provides a new chemical scaffold for developing novel broad-spectrum antibiotics which can help replenish the pipeline of antibiotics.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Benzodiazepinas/química , Benzodiazepinas/farmacología , Diseño de Fármacos , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Antibacterianos/metabolismo , Benzodiazepinas/metabolismo , Línea Celular , Girasa de ADN/química , Girasa de ADN/metabolismo , Bacterias Gramnegativas/enzimología , Humanos , Simulación del Acoplamiento Molecular , Conformación Proteica
18.
J Med Microbiol ; 69(4): 521-529, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32125265

RESUMEN

Introduction. Colistin is a last resort antibiotic for treating infections caused by carbapenem-resistant isolates. Mechanisms of resistance to colistin have been widely described in Klebsiella pneumoniae and Escherichia coli but have yet to be characterized in Citrobacter and Enterobacter species.Aim. To identify the causative mutations leading to generation of colistin resistance in Citrobacter and Enterobacter spp.Methodology. Colistin resistance was generated by culturing in increasing concentrations of colistin or by direct culture in a lethal (above MIC) concentration. Whole-genome sequencing was used to identify mutations. Fitness of resistant strains was determined by changes in growth rate, and virulence in Galleria mellonella.Results. We were able to generate colistin resistance upon exposure to sub-MIC levels of colistin, in several but not all strains of Citrobacter and Enterobacter resulting in a 16-fold increase in colistin MIC values for both species. The same individual strains also developed resistance to colistin after a single exposure at 10× MIC, with a similar increase in MIC. Genetic analysis revealed that this increased resistance was attributed to mutations in PmrB for Citrobacter and PhoP in Enterobacter, although we were not able to identify causative mutations in all strains. Colistin-resistant mutants showed little difference in growth rate, and virulence in G. mellonella, although there were strain-to-strain differences.Conclusions. Stable colistin resistance may be acquired with no loss of fitness in these species. However, only select strains were able to adapt suggesting that acquisition of colistin resistance is dependent upon individual strain characteristics.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/genética , Citrobacter/efectos de los fármacos , Colistina/farmacología , Farmacorresistencia Bacteriana , Enterobacter/efectos de los fármacos , Proteínas Bacterianas/metabolismo , Citrobacter/genética , Citrobacter/metabolismo , Enterobacter/genética , Enterobacter/metabolismo , Pruebas de Sensibilidad Microbiana , Mutación
19.
PLoS Pathog ; 15(12): e1008101, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31877175

RESUMEN

Active efflux due to tripartite RND efflux pumps is an important mechanism of clinically relevant antibiotic resistance in Gram-negative bacteria. These pumps are also essential for Gram-negative pathogens to cause infection and form biofilms. They consist of an inner membrane RND transporter; a periplasmic adaptor protein (PAP), and an outer membrane channel. The role of PAPs in assembly, and the identities of specific residues involved in PAP-RND binding, remain poorly understood. Using recent high-resolution structures, four 3D sites involved in PAP-RND binding within each PAP protomer were defined that correspond to nine discrete linear binding sequences or "binding boxes" within the PAP sequence. In the important human pathogen Salmonella enterica, these binding boxes are conserved within phylogenetically-related PAPs, such as AcrA and AcrE, while differing considerably between divergent PAPs such as MdsA and MdtA, despite overall conservation of the PAP structure. By analysing these binding sequences we created a predictive model of PAP-RND interaction, which suggested the determinants that may allow promiscuity between certain PAPs, but discrimination of others. We corroborated these predictions using direct phenotypic data, confirming that only AcrA and AcrE, but not MdtA or MsdA, can function with the major RND pump AcrB. Furthermore, we provide functional validation of the involvement of the binding boxes by disruptive site-directed mutagenesis. These results directly link sequence conservation within identified PAP binding sites with functional data providing mechanistic explanation for assembly of clinically relevant RND-pumps and explain how Salmonella and other pathogens maintain a degree of redundancy in efflux mediated resistance. Overall, our study provides a novel understanding of the molecular determinants driving the RND-PAP recognition by bridging the available structural information with experimental functional validation thus providing the scientific community with a predictive model of pump-contacts that could be exploited in the future for the development of targeted therapeutics and efflux pump inhibitors.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Proteínas de Transporte de Membrana/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Infecciones Bacterianas/tratamiento farmacológico , Proteínas Bacterianas/efectos de los fármacos , Proteínas Bacterianas/metabolismo , Transporte Biológico/efectos de los fármacos , Proteínas Portadoras/metabolismo , Femenino , Proteínas de Transporte de Membrana/metabolismo , Ratones Endogámicos BALB C , Periplasma/efectos de los fármacos , Periplasma/metabolismo , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/metabolismo
20.
Int J Antimicrob Agents ; 54(5): 538-546, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31398484

RESUMEN

To understand the potential utility of novel nitroreductase (NR)-activated prodrugs, NR enzyme activity was assessed in clinical Klebsiella pneumoniae isolates using a NR-activated fluorescent probe. NR activity was constant throughout the bacterial growth cycle, but individual K. pneumoniae isolates exhibited a wide range of NR activity levels. The genes of major NR enzymes (nfsA and nfnB) showed a number of sequence variants. Aside from a C-terminal extension of NfnB, which may be responsible for lower NR activity in specific isolates, the genetic differences did not explain the variation in activity. Analysis of important clinical strains (ST11, ST258, ST14 and ST101) showed significant variation in NR activity between isolates within the same sequence type despite conservation of nfsA/nfnB sequences. Addition of methyl viologen (MV), a known activator of soxRS, caused a significant increase in NR activity for all strains, with proportionally larger increases in activity seen for strains with low uninduced NR levels. Real-time PCR on selected strains following exposure to MV showed upregulation of soxS (15-32-fold) and nfsA (5-22-fold) in all strains tested. Expression of nfnB was upregulated 2-5-fold in 4/6 strains tested. High levels of NR activity in the absence of MV activation correlated with nitrofurantoin susceptibility. These data provide evidence that NR gene mutations and regulatory pathways influence NR activity in K. pneumoniae isolates and this is likely to impact treatment efficacy with novel nitro-containing drugs or prodrugs.


Asunto(s)
Antibacterianos/farmacología , Klebsiella pneumoniae/efectos de los fármacos , Nitrorreductasas/análisis , Nitrorreductasas/metabolismo , Profármacos/farmacología , Regulación Bacteriana de la Expresión Génica/genética , Variación Genética/genética , Humanos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/aislamiento & purificación , Simulación del Acoplamiento Molecular , Nitrorreductasas/genética , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA