Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancer Cell ; 34(4): 674-689.e8, 2018 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-30245083

RESUMEN

Intra-tumor heterogeneity caused by clonal evolution is a major problem in cancer treatment. To address this problem, we performed label-free quantitative proteomics on primary acute myeloid leukemia (AML) samples. We identified 50 leukemia-enriched plasma membrane proteins enabling the prospective isolation of genetically distinct subclones from individual AML patients. Subclones differed in their regulatory phenotype, drug sensitivity, growth, and engraftment behavior, as determined by RNA sequencing, DNase I hypersensitive site mapping, transcription factor occupancy analysis, in vitro culture, and xenograft transplantation. Finally, we show that these markers can be used to identify and longitudinally track distinct leukemic clones in patients in routine diagnostics. Our study describes a strategy for a major improvement in stratifying cancer diagnosis and treatment.


Asunto(s)
Leucemia Mieloide Aguda/genética , Mutación/genética , Fenotipo , Factores de Transcripción/genética , Adulto , Anciano , Secuencia de Bases/genética , Evolución Clonal/genética , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Tirosina Quinasa 3 Similar a fms/genética
2.
PLoS One ; 11(1): e0146100, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26745281

RESUMEN

The four members of the epidermal growth factor receptor (EGFR/ERBB) family form homo- and heterodimers which mediate ligand-specific regulation of many key cellular processes in normal and cancer tissues. While signaling through the EGFR has been extensively studied on the molecular level, signal transduction through ERBB3/ERBB4 heterodimers is less well understood. Here, we generated isogenic mouse Ba/F3 cells that express full-length and functional membrane-integrated ERBB3 and ERBB4 or ERBB4 alone, to serve as a defined cellular model for biological and phosphoproteomics analysis of ERBB3/ERBB4 signaling. ERBB3 co-expression significantly enhanced Ba/F3 cell proliferation upon neuregulin-1 (NRG1) treatment. For comprehensive signaling studies we performed quantitative mass spectrometry (MS) experiments to compare the basal ERBB3/ERBB4 cell phosphoproteome to NRG1 treatment of ERBB3/ERBB4 and ERBB4 cells. We employed a workflow comprising differential isotope labeling with mTRAQ reagents followed by chromatographic peptide separation and final phosphopeptide enrichment prior to MS analysis. Overall, we identified 9686 phosphorylation sites which could be confidently localized to specific residues. Statistical analysis of three replicate experiments revealed 492 phosphorylation sites which were significantly changed in NRG1-treated ERBB3/ERBB4 cells. Bioinformatics data analysis recapitulated regulation of mitogen-activated protein kinase and Akt pathways, but also indicated signaling links to cytoskeletal functions and nuclear biology. Comparative assessment of NRG1-stimulated ERBB4 Ba/F3 cells revealed that ERBB3 did not trigger defined signaling pathways but more broadly enhanced phosphoproteome regulation in cells expressing both receptors. In conclusion, our data provide the first global picture of ERBB3/ERBB4 signaling and provide numerous potential starting points for further mechanistic studies.


Asunto(s)
Linfocitos B/metabolismo , Fosfoproteínas/genética , Proteoma/genética , Receptor ErbB-3/genética , Receptor ErbB-4/genética , Transducción de Señal , Secuencia de Aminoácidos , Animales , Linfocitos B/citología , Linfocitos B/efectos de los fármacos , Línea Celular , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Ingeniería Genética , Humanos , Ratones , Datos de Secuencia Molecular , Neurregulina-1/metabolismo , Neurregulina-1/farmacología , Fosfoproteínas/metabolismo , Fosforilación , Unión Proteica , Mapeo de Interacción de Proteínas , Proteoma/metabolismo , Receptor ErbB-3/metabolismo , Receptor ErbB-4/metabolismo
3.
Antiviral Res ; 124: 101-9, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26546752

RESUMEN

Infection with human cytomegalovirus (HCMV) is a serious medical problem, particularly in immunocompromised individuals and neonates. The success of standard antiviral therapy is hampered by low drug compatibility and induction of viral resistance. A novel strategy is based on the exploitation of cell-directed signaling inhibitors. The broad antiinfective drug artesunate (ART) offers additional therapeutic options such as oral bioavailability and low levels of toxic side-effects. Here, novel ART-derived compounds including dimers and trimers were synthesized showing further improvements over the parental drug. Antiviral activity and mechanistic aspects were determined leading to the following statements: (i) ART exerts antiviral activity towards human and animal herpesviruses, (ii) no induction of ART-resistant HCMV mutants occurred in vitro, (iii) chemically modified derivatives of ART showed strongly enhanced anti-HCMV efficacy, (iv) NF-κB reporter constructs, upregulated during HCMV replication, could be partially blocked by ART treatment, (v) ART activity analyzed in stable reporter cell clones indicated an inhibition of stimulated NF-κB but not CREB pathway, (vi) solid-phase immobilized ART was able to bind to NF-κB RelA/p65, and (vii) peptides within NF-κB RelA/p65 represent candidates of ART binding as analyzed by in silico docking and mass spectrometry. These novel findings open new prospects for the future medical use of ART and ART-related drug candidates.


Asunto(s)
Artemisininas/farmacología , Citomegalovirus/efectos de los fármacos , Citomegalovirus/metabolismo , FN-kappa B/metabolismo , Factor de Transcripción ReIA/metabolismo , Antivirales/química , Antivirales/farmacología , Artemisininas/química , Artesunato , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Citomegalovirus/genética , Farmacorresistencia Viral , Células HEK293 , Herpesviridae/efectos de los fármacos , Humanos , Mutación , FN-kappa B/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Activación Transcripcional , Regulación hacia Arriba
4.
Antiviral Res ; 99(2): 139-48, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23648710

RESUMEN

Human cytomegalovirus infection can lead to life-threatening clinical manifestations particularly in the immunocompromised host. Current therapy options face severe limitations leading to a continued search for alternative drug candidates. Viral replication is dependent on a balanced interaction between viral and cellular proteins. Especially protein kinases are important regulators of virus-host interaction indicated by remarkable kinome alterations induced upon HCMV infection. Here we report a novel approach of kinome profiling with an outcome that suggests an important role of specific cellular protein kinases, such as AMPK, ABL2 and Aurora A. Inhibition of AMPK and ABL kinases showed a significant reduction, whereas inhibition of Aurora A kinase led to a slight activation of HCMV replication, as measured in a GFP reporter-based replication assay. Furthermore, analysis of the mode of antiviral action suggested a substantial benefit for the efficiency of viral replication at the immediate early (AMPK) or early-late (ABL) phases of HCMV gene expression. In contrast, inhibition of Aurora A kinase promoted an enhancement of viral early-late gene expression, suggesting a putative role of Aurora A signaling in host defense. Thus, the combined data provide new information on host cell kinases involved in viral replication and uncovered potential targets for future antiviral strategies.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Aurora Quinasa A/metabolismo , Infecciones por Citomegalovirus/enzimología , Citomegalovirus/fisiología , Proteínas Proto-Oncogénicas c-abl/metabolismo , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Antivirales/farmacología , Antivirales/uso terapéutico , Aurora Quinasa A/antagonistas & inhibidores , Benzamidas/farmacología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Citomegalovirus/genética , Infecciones por Citomegalovirus/virología , Regulación Viral de la Expresión Génica/efectos de los fármacos , Humanos , Mesilato de Imatinib , Péptidos y Proteínas de Señalización Intracelular , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Inhibidores de la Síntesis del Ácido Nucleico/uso terapéutico , Piperazinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-abl/antagonistas & inhibidores , Pirimidinas/farmacología , Serina-Treonina Quinasa 3 , Replicación Viral/efectos de los fármacos
5.
Mol Cell ; 45(4): 517-28, 2012 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-22365831

RESUMEN

Hsp90 is an essential molecular chaperone in the eukaryotic cytosol. Its function is modulated by cochaperones and posttranslational modifications. Importantly, the phosphatase Ppt1 is a dedicated regulator of the Hsp90 chaperone system. Little is known about Ppt1-dependent phosphorylation sites and how these affect Hsp90 activity. Here, we identified the major phosphorylation sites of yeast Hsp90 in its middle or the C-terminal domain and determined the subset regulated by Ppt1. In general, phosphorylation decelerates the Hsp90 machinery, reduces chaperone function in vivo, sensitizes yeast cells to Hsp90 inhibition and affects DNA repair processes. Modification of one particular site (S485) is lethal, whereas others modulate Hsp90 activity via distinct mechanisms affecting the ATPase activity, cochaperone binding and manipulating conformational transitions in Hsp90. Our mechanistic analysis reveals that phosphorylation of Hsp90 permits a regulation of the conformational cycle at distinct steps by targeting switch points for the communication of remote regions within Hsp90.


Asunto(s)
Proteínas Fúngicas/química , Proteínas HSP90 de Choque Térmico/química , Levaduras/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/fisiología , Proteínas HSP90 de Choque Térmico/metabolismo , Espectrometría de Masas , Modelos Moleculares , Fosforilación , Estructura Terciaria de Proteína , Levaduras/genética
6.
J Proteome Res ; 11(4): 2397-408, 2012 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-22369663

RESUMEN

Even though protein phosphatases are key regulators of signal transduction, their cellular mechanisms of action are poorly understood. Here, we undertook a large-scale proteomics survey to identify cellular protein targets of a serine/threonine phosphatase. We used SILAC-based quantitative MS to measure differences in protein expression and phosphorylation upon ablation of the serine/threonine phosphatase Ppt1 in Saccharomyces cerevisiae. Phosphopeptide fractionation by strong cation exchange chromatography combined with immobilized metal affinity chromatography (IMAC) enrichment enabled quantification of more than 8000 distinct phosphorylation sites in Ppt1 wild-type versus Ppt1-deficient yeast cells. We further quantified the relative expression of 1897 yeast proteins and detected no major protein changes accompanying Ppt1 deficiency. Notably, we found 33 phosphorylation sites to be significantly and reproducibly up-regulated while no phosphorylation events were repressed in cells lacking Ppt1. Ppt1 acted on its cellular target proteins in a sequence- and site-specific fashion. Several of the regulated phosphoproteins were involved in the response to heat stress in agreement with known Ppt1 functions. Additionally, biosynthetic enzymes were particularly prominent among Ppt1-regulated phosphoproteins, pointing to unappreciated roles of Ppt1 in the control of various metabolic functions. These results demonstrate the utility of large-scale and quantitative phosphoproteomics to identify cellular sites of serine/threonine phosphatase action in an unbiased manner.


Asunto(s)
Fosfoproteínas Fosfatasas/metabolismo , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Eliminación de Gen , Marcaje Isotópico , Espectrometría de Masas , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas/análisis , Fosfoproteínas/química , Proteoma/análisis , Proteómica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
7.
EMBO J ; 31(6): 1506-17, 2012 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-22227520

RESUMEN

Sti1/Hop is a modular protein required for the transfer of client proteins from the Hsp70 to the Hsp90 chaperone system in eukaryotes. It binds Hsp70 and Hsp90 simultaneously via TPR (tetratricopeptide repeat) domains. Sti1/Hop contains three TPR domains (TPR1, TPR2A and TPR2B) and two domains of unknown structure (DP1 and DP2). We show that TPR2A is the high affinity Hsp90-binding site and TPR1 and TPR2B bind Hsp70 with moderate affinity. The DP domains exhibit highly homologous α-helical folds as determined by NMR. These, and especially DP2, are important for client activation in vivo. The core module of Sti1 for Hsp90 inhibition is the TPR2A-TPR2B segment. In the crystal structure, the two TPR domains are connected via a rigid linker orienting their peptide-binding sites in opposite directions and allowing the simultaneous binding of TPR2A to the Hsp90 C-terminal domain and of TPR2B to Hsp70. Both domains also interact with the Hsp90 middle domain. The accessory TPR1-DP1 module may serve as an Hsp70-client delivery system for the TPR2A-TPR2B-DP2 segment, which is required for client activation in vivo.


Asunto(s)
Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/metabolismo , Sitios de Unión , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/metabolismo , Modelos Moleculares , Proteína Oncogénica pp60(v-src)/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Receptores de Glucocorticoides/metabolismo , Saccharomyces cerevisiae/metabolismo
9.
J Mol Biol ; 356(3): 802-11, 2006 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-16403523

RESUMEN

Hsp90 is an essential chaperone protein in the cytosol of eukaryotic cells. It cooperates with the chaperone Hsp70 in defined complexes mediated by the adaptor protein Hop (Sti1 in yeast). These Hsp70/Hsp90 chaperone complexes play a major role in the folding and maturation of key regulatory proteins in eukaryotes. Understanding how non-native client proteins are transferred from one chaperone to the other in these complexes is of central importance. Here, we analyzed the molecular mechanism of this reaction using luciferase as a substrate protein. Our experiments define a pathway for luciferase folding in the Hsp70/Hsp90 chaperone system. They demonstrate that Hsp70 is a potent capture device for unfolded protein while Hsp90 is not very efficient in this reaction. When Hsp90 is absent, in contrast to the in vivo situation, Hsp70 together with the two effector proteins Ydj1 and Sti1 exhibits chaperone activity towards luciferase. In the presence of the complete chaperone system, Hsp90 exhibits a specific positive effect only in the presence of Ydj1. If this factor is absent, the transferred luciferase is trapped on Hsp90 in an inactive conformation. Interestingly, identical results were observed for the yeast and the human chaperone systems although the regulatory function of human Hop is completely different from that of yeast Sti1.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas Fúngicas/química , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/química , Proteínas de Saccharomyces cerevisiae/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas de Choque Térmico , Humanos , Luciferasas/química , Luciferasas/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato
10.
EMBO J ; 25(2): 367-76, 2006 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-16407978

RESUMEN

Ppt1 is the yeast member of a novel family of protein phosphatases, which is characterized by the presence of a tetratricopeptide repeat (TPR) domain. Ppt1 is known to bind to Hsp90, a molecular chaperone that performs essential functions in the folding and activation of a large number of client proteins. The function of Ppt1 in the Hsp90 chaperone cycle remained unknown. Here, we analyzed the function of Ppt1 in vivo and in vitro. We show that purified Ppt1 specifically dephosphorylates Hsp90. This activity requires Hsp90 to be directly attached to Ppt1 via its TPR domain. Deletion of the ppt1 gene leads to hyperphosphorylation of Hsp90 in vivo and an apparent decrease in the efficiency of the Hsp90 chaperone system. Interestingly, several Hsp90 client proteins were affected in a distinct manner. Our findings indicate that the Hsp90 multichaperone cycle is more complex than was previously thought. Besides its regulation via the Hsp90 ATPase activity and the sequential binding and release of cochaperones, with Ppt1, a specific phosphatase exists, which positively modulates the maturation of Hsp90 client proteins.


Asunto(s)
Proteínas HSP90 de Choque Térmico/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Calorimetría , Escherichia coli , Eliminación de Gen , Proteínas Fluorescentes Verdes , Luciferasas , Fosfoproteínas Fosfatasas/genética , Fosforilación , Unión Proteica , Pliegue de Proteína , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae , Análisis Espectral
11.
Int J Biol Macromol ; 39(1-3): 23-8, 2006 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-16442612

RESUMEN

Here we report the recombinant expression of the catalytically active phosphatase domain of the Saccharomyces cerevisiae protein phosphatase 1 (Ppt1) in E. coli. Ppt1 consists of two domains: a 20 kDa TPR (tetratricopeptide repeat) domain, which mediates protein-protein interactions and directs Ppt1 to potential substrate proteins, e.g. the molecular chaperone Hsp90. The second, a 40 kDa phosphatase domain, exhibits catalytic activity and dephosphorylates phosphorylated serine/threonine residues of respective substrate proteins. The Ppt1 phosphatase domain was cloned and expressed in E. coli in unsoluble inclusion bodies. After isolating these, the aggregates were denatured with guanidinium hydrochloride and soluble protein was purified using affinity chromatography. Optimal renaturation conditions led to large amounts of the refolded phosphatase domain in high purity. Interestingly, further enzymatic studies revealed that the domain is not only correctly folded, but also shows higher catalytic activity compared to the full length protein.


Asunto(s)
Fosfoproteínas Fosfatasas/biosíntesis , Fosfoproteínas Fosfatasas/aislamiento & purificación , Pliegue de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Escherichia coli/genética , Expresión Génica , Fosfoproteínas Fosfatasas/química , Fosfoproteínas Fosfatasas/genética , Proteína Fosfatasa 1 , Estructura Terciaria de Proteína/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas de Saccharomyces cerevisiae , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...