Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39437318

RESUMEN

Zirconia aerogels possess significant applications, including their use catalyst carriers, thermal insulation materials, and thermal barrier coatings. This is due to their ultrahigh temperature resistance, high porosity, and low thermal conductivity. Nonetheless, the inherent challenges associated with ZrO2 aerogels, such as high brittleness, low compressive strength, and inadequate formability, restrict their potential applications. In this paper, with ultralow thermal conductivity and high strength zirconia aerogel composites with inorganic zirconium salt zirconium carbonate as the raw material, acetic acid as the solvent, polyvinylpyrrolidone (PVP) as the viscosity builder to stabilize the structure of the aerogel during the freeze-drying process. Additionally, yttrium nitrate hexahydrate (Y(NO3)3·6H2O) is employed as a phase stabilizer. The sol-gel method, in conjunction with the freeze-drying process, is utilized to fabricate ZrO2 aerogel composites with an optimized microstructure. The findings indicate that optimal process parameters are achieved with a PVP solution concentration of 2.0 wt % and a zirconium carbonate concentration of 20 wt %. The mechanical properties of the resulting composites reach up to 550 kPa, while the thermal insulation performance exhibits a temperature difference of 207 °C/cm and a thermal conductivity of 0.0504 W/(m·K). This advancement addresses the mechanical stability issues commonly associated with traditional ceramic aerogels and widely used elastic insulating materials, thereby enhancing their applicability as thermal insulation and heat preservation materials.

2.
Micromachines (Basel) ; 15(7)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39064411

RESUMEN

Acoustic emission (AE) technology has been widely utilized to monitor the SiC wafer lapping process. The root-mean-square (RMS) of the time-domain eigenvalues of the AE signal has a linear relationship with the material removal rate (MRR). However, the existence of background noise severely reduces signal monitoring accuracy. Noise interference often leads to increased RMS deviation and signal distortion. In the study presented in this manuscript, a frequency threshold noise reduction approach was developed by combining and improving wavelet packet noise reduction and spectral subtraction noise reduction techniques. Three groups of SiC lapping experiments were conducted on a fixed abrasive pad, and the lapping acoustic signals were processed using three different noise reduction approaches: frequency threshold, wavelet packet, and spectral subtraction. The results show that the noise reduction method using the frequency threshold is the most effective, with the best coefficient of determination (R2) for the linear fit of the RMS to the MRR.

3.
Materials (Basel) ; 17(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38894023

RESUMEN

Polyurethane polishing pads are important in chemical mechanical polishing (CMP). Thus, understanding how to decrease the density but increase the porosity is a crucial aspect of improving the efficiency of a polyurethane polishing pad. According to the principle of gas generation by thermal decomposition of sodium bicarbonate and ammonium bicarbonate, polyurethane polishing pad was prepared by a secondary foaming method. The influence of adding such an inorganic foaming agent as an auxiliary foaming agent on the structure, physical properties, and mechanical properties of polyurethane polishing pads was discussed. The results showed that compared with the polyurethane polishing pad without an inorganic foaming agent, the open-pore structure increased, the density decreased, and the porosity and water absorption increased significantly. The highest porosity and material removal rate (MRR) with sodium bicarbonate added was 3.3% higher than those without sodium bicarbonate and 33.8% higher than those without sodium bicarbonate. In addition, the highest porosity and MRR with ammonium bicarbonate were 7.2% higher and 47.8% higher than those without ammonium bicarbonate. Therefore, it was finally concluded that the optimum amount of sodium bicarbonate to be added was 3 wt%, and the optimum amount of ammonium bicarbonate to be added was 1 wt%.

4.
Materials (Basel) ; 17(10)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38793529

RESUMEN

In recent years, flexible pressure sensors have received considerable attention for their potential applications in health monitoring and human-machine interfaces. However, the development of flexible pressure sensors with excellent sensitivity performance and a variety of advantageous characteristics remains a significant challenge. In this paper, a high-performance flexible piezoresistive pressure sensor, BC/ZnO, is developed with a sensitive element consisting of bacterial cellulose (BC) nanofibrous aerogel modified by ZnO nanorods. The BC/ZnO pressure sensor exhibits excellent mechanical and hydrophobic properties, as well as a high sensitivity of -15.93 kPa-1 and a wide range of detection pressure (0.3-20 kPa), fast response (300 ms), and good cyclic durability (>1000). Furthermore, the sensor exhibits excellent sensing performance in real-time monitoring of a wide range of human behaviors, including mass movements and subtle physiological signals.

5.
Int J Biol Macromol ; 269(Pt 2): 132157, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723804

RESUMEN

Hydrogel-based wound dressings are becoming increasingly important for wound healing. Bacterial cellulose (BC) has been commonly used as wound dressings due to its good in vitro and in vivo biocompatibility. However, pure BC does not possess antibacterial properties. In this regard, polycation gel was grafted onto the BC using a surface-initiated activator regenerated by electron transfer atom transfer radical polymerization (SI-ARGET ATRP) with subsequent quaternization for antibacterial wound dressing. Dimethylethyl methacrylate (DMAEMA) was successfully polymerized on the BC surface which was confirmed by Fourier transform infrared spectroscopy and elemental analysis. The morphology structure, specific surface area, pore size, and mechanical properties were also characterized. The quaternized PDMAEMA grafted on the BC endowed it with excellent antibacterial activity against E. coli (Gram-negative) and S. aureus (Gram-positive) with a killing rate of 89.2 % and 93.4 %, respectively. The number of cells was significantly reduced on QPD/BC hydrogel, demonstrating its good anti-adhesion ability. In vitro cellular evaluation revealed that the antibacterial wound dressing exhibited good biocompatibility. Overall, this study provides a feasible method to develop antibacterial and anti-cell adhesive hydrogel, which has a promising potential for wound healing.


Asunto(s)
Antibacterianos , Vendajes , Celulosa , Escherichia coli , Polielectrolitos , Staphylococcus aureus , Cicatrización de Heridas , Celulosa/química , Celulosa/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Polielectrolitos/química , Polielectrolitos/farmacología , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Poliaminas/química , Poliaminas/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Animales , Metacrilatos/química , Ratones , Pruebas de Sensibilidad Microbiana , Humanos , Nylons
6.
J Colloid Interface Sci ; 656: 474-484, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38007939

RESUMEN

Solar-driven interfacial evaporation technology has attracted significant attention for water purification. However, design and fabrication of solar-driven evaporator with cost-effective, excellent capability and large-scale production remains challenging. In this study, inspired by plant transpiration, a tri-layered hierarchical nanofibrous photothermal membrane (HNPM) with a unidirectional water transport effect was designed and prepared via electrospinning for efficient solar-driven interfacial evaporation. The synergistic effect of the hierarchical hydrophilic-hydrophobic structure and the self-pumping effect endowed the HNPM with unidirectional water transport properties. The HNPM could unidirectionally drive water from the hydrophobic layer to the hydrophilic layer within 2.5 s and prevent reverse water penetration. With this unique property, the HNPM was coupled with a water supply component and thermal insulator to assemble a self-floating evaporator for water desalination. Under 1 sun illumination, the water evaporation rates of the designed evaporator with HNPM in pure water and dyed wastewater reached 1.44 and 1.78 kg·m-2·h-1, respectively. The evaporator could achieve evaporation of 11.04 kg·m-2 in 10 h under outdoor solar conditions. Moreover, the tri-layered HNPM exhibited outstanding flexibility and recyclability. Our bionic hydrophobic-to-hydrophilic structure endowed the solar-driven evaporator with capillary wicking and transpiration effects, which provides a rational design and optimization for efficient solar-driven applications.

7.
Nano Lett ; 23(22): 10297-10304, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37955657

RESUMEN

Low-grade heat exists ubiquitously in the environment, and gel-state thermogalvanic cells (GTCs) can directly convert thermal energy into electricity by a redox reaction. However, their low ionic conductivity and poor mechanical properties are still insufficient for their potential applications. Here, we designed a bacterial cellulose (BC) nanofiber-macromolecular entanglement network to balance the GTC's thermopower and mechanical properties. Therefore, the BC-GTC shows a Seebeck coefficient of 3.84 mV K-1, an ionic conductivity of 108.5 mS cm-1, and a high specific output power density of 1760 µW m-2 K-2, which are much higher than most current literature. Further connecting 15 units of BC-GTCs, the output voltage of 3.35 V can be obtained at a temperature gradient of 65 K, which can directly power electronic devices such as electronic calculators, thermohydrometers, fans, and light-emitting diodes (LEDs). This work offers a promising method for developing high-performance and durable GTC in sustainable green energy.

8.
Gels ; 9(10)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37888346

RESUMEN

Self-healing hydrogel products have attracted a great deal of interest in wound healing due to their ability to repair their own structural damage. Herein, an all-natural self-healing hydrogel based on methacrylated chitosan (CSMA) and dialdehyde bacterial cellulose (DABC) is developed. MA is used to modify CS and obtain water-soluble biomaterial-based CSMA with photo crosslinking effects. BC is modified through a simple oxidation method to gain dialdehyde on the polymer chain. The success of the modification is confirmed via FTIR. Hydrogels are formed within 11 min through the establishment of a Schiff base between the amino of CSMA and the aldehyde of DABC. A dynamically reversible Schiff base bond endows hydrogel with good self-healing properties through macroscopic and microscopic observations. We observe the uniform and porous structure in the hydrogel using SEM images, and DABC nanofibers are found to be well distributed in the hydrogel. The compressive strength of the hydrogel is more than 20 kPa and the swelling rate sees over a 10-fold increase. In addition, the CSMA/DABC hydrogel has good cytocompatibility, with cell viability exceeding 90%. These results indicate that the all-natural self-healable CSMA/DABC hydrogel demonstrates strong application potential in wound healing and tissue repair.

9.
Carbohydr Polym ; 308: 120647, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36813339

RESUMEN

Skin wounds need an appropriate wound dressing to help prevent bacterial infection and accelerate wound closure. Bacterial cellulose (BC) with a three-dimensional (3D) network structure is an important commercial dressing. However, how to effectively load antibacterial agents and balance the antibacterial activity is a lingering issue. Herein, this study aims to develop a functional BC hydrogel containing silver-loaded zeolitic imidazolate framework-8 (ZIF-8) antibacterial agent. The tensile strength of the prepared biopolymer dressing is >1 MPa, the swelling property is over 3000 %, the temperature can reach 50 °C in 5 min with near-infrared (NIR) and the release of Ag+ and Zn2+ is stable. In vitro investigation shows that the hydrogel displays enhanced antibacterial activity, and the bacteria survival ratios are only 0.85 % and 0.39 % against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). In vitro cell experiments present that BC/polydopamine/ZIF-8/Ag (BC/PDA/ZIF-8/Ag) shows satisfactory biocompatibility and promising angiogenic ability. In vivo study, the full-thickness skin defect on rats demonstrates remarkably wound healing ability and accelerated skin re-epithelialization. This work presents a competitive functional dressing with effective antibacterial properties and accelerative angiogenesis activities for wound repair.


Asunto(s)
Infecciones Estafilocócicas , Infección de Heridas , Ratas , Animales , Celulosa/química , Escherichia coli , Hidrogeles/química , Staphylococcus aureus , Cicatrización de Heridas , Antibacterianos/química , Infecciones Estafilocócicas/tratamiento farmacológico , Infección de Heridas/tratamiento farmacológico
10.
Nano Lett ; 22(20): 8152-8160, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36219168

RESUMEN

Ionic conductors such as polymer electrolytes and ionic liquids have high thermoelectric voltages several orders of magnitude higher than electronic thermoelectric materials, while their conductivity is much lower than the latter. This work reports a novel approach to achieve high-performance ionic conductors using calcium ion (Ca2+) coordinated bacterial cellulose (CaBC) through molecular channel engineering. Through the coordination of Ca2+ with cellulose molecular chain, the distance between the cellulose molecular chains is widened, so that ions can transport along the cellulose molecular chain. Therefore, we reported ionic thermoelectric (i-TE) material based on CaBC/NaCl with a relatively high ionic Seebeck coefficient of -27.2 mV K-1 and high ionic conductivity of 204.2 mS cm-1. This ionic hydrogel is promising in the design of high-thermopower i-TE materials for low-grade heat energy harvesting.


Asunto(s)
Celulosa , Líquidos Iónicos , Calor , Cloruro de Sodio , Calcio , Iones , Electrólitos , Polímeros , Hidrogeles
11.
ACS Appl Mater Interfaces ; 14(40): 45954-45965, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36181479

RESUMEN

Conductive polyzwitterionic hydrogels with good adhesion properties show potential prospect in implantable electrodes and electronic devices. Adhesive property of polyzwitterionic hydrogels in humid environments can be improved by the introduction of catechol groups. However, common catechol modifiers can usually quench free radicals, resulting in a contradiction between long-term tissue adhesion and hydrogel toughness. By adding tannic acid (TA) to the dispersion of clay nanosheets and nanofibers, we designed TA-coated nanoflowers and nanofibers as the reinforcing phase to prepare polyzwitterionic hydrogels with adhesion properties. The hydrogel combines the mussel-like and zwitterionic co-adhesive mechanism to maintain long-term adhesion in underwater environments. In particular, the noncovalent cross-linking provided by the nanoflower structure effectively compensates for the defects caused by free-radical quenching so that the hydrogel obtained a high stretchability of over 2900% and a toughness of 1.16 J/m3. The hydrogel also has excellent anti-biofouling property and shows resistance to bacteria and cells. In addition, the hydrogel possesses a low modulus (<10 kPa) and ionic conductivity (0.25 S/m), making it an ideal material for the preparation of implantable electrodes.


Asunto(s)
Incrustaciones Biológicas , Hidrogeles , Adhesivos/química , Incrustaciones Biológicas/prevención & control , Catecoles , Arcilla , Electrodos , Hidrogeles/química , Hidrogeles/farmacología , Polímeros/química , Taninos
12.
Int J Biol Macromol ; 217: 77-87, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-35817232

RESUMEN

Biocompatible hydrogels with versatile functions are highly desired for demanding the complicated tissue issues, including irregular site and motional wound. Herein, a bio-based hydrogel with multifunctional properties is designed based on quaternized chitosan and dialdehyde bacterial cellulose. As a functional wound dressing, the hydrogel shows rapid self-healing performance and injectable behaviors due to dynamic Schiff-base interactions and presents superior antibacterial activity against E. coli (gram-negative) and S. aureus (gram-positive). The constructed 3D hydrogel also exhibits proper compressive property, desired water retention capacity. To be mentioned, the hydrogel could mimic the structure of natural extracellular matrix (ECM) in the presence of bacterial cellulose nanofibers. Thus, the biopolymer-based hydrogel shows good biocompatibility in terms of cell proliferation and cell spreading. The prepared chitosan-based hydrogel with self-healing, antibacterial, and low cost will become a promising biomaterial for wound healing.


Asunto(s)
Quitosano , Antibacterianos/química , Antibacterianos/farmacología , Bacterias , Celulosa/farmacología , Quitosano/química , Quitosano/farmacología , Escherichia coli , Hidrogeles/química , Hidrogeles/farmacología , Staphylococcus aureus , Cicatrización de Heridas
13.
ACS Appl Mater Interfaces ; 14(25): 29167-29175, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35695912

RESUMEN

With the booming development of flexible wearable sensing devices, flexible stretchable strain sensors with crack structure and high sensitivity have been widely concerned. However, the narrow sensing range has been hindering the development of crack-based strain sensors. In addition, the existence of the crack structure may reduce the interface compatibility between the elastic matrix and the sensing material. Herein, to overcome these problems, integrated core-sheath fibers were prepared by coaxial wet spinning with partially added carbon nanotube sensing materials in thermoplastic polyurethane elastic materials. Due to the superior interface compatibility and the change in the conductive path during stretching, the fiber strain sensor exhibits excellent durability (5000 tensile cycles), high sensitivity (>104), large stretchability (500%), a low detection limit (0.01%), and a fast response time of ∼60 ms. Based on these outstanding strain sensing performances, the fiber sensor is demonstrated to detect subtle strain changes (e.g., pulse wave and swallowing) and large strain changes (e.g., finger joint and wrist movement) in real time. Moreover, the fabric sensor woven with the core-sheath fibers has an excellent performance in wrist bending angle detection, and the smart gloves based on the fabric sensors also show exceptional recognition ability as a wireless sign language translation device. This integrated strategy may provide prospective opportunities to develop highly sensitive strain sensors with durable deformation and a wide detection range.

14.
ACS Appl Mater Interfaces ; 14(18): 21319-21329, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35471964

RESUMEN

Liquid sensors for detecting water and body fluids are crucial in daily water usage and health monitoring, but it is challenging to combine sensing performance with high tensile deformation and multifunctional applications. Here, a substrate-free, self-stretchable bacterial cellulose (BC)/carbon nanotube (CNT) helical fiber liquid sensor was prepared by the solution spinning and coiling process using BC as the water-sensitive matrix and CNTs as the active sensing materials. The BC/CNT (BCT) fiber sensor has a high stretch ratio of more than 1000% and a rapid response for a current change rate of 104% within 1 s, which is almost unaffected under washing and various stretching or knotting deformations. By combination of the BCT fiber, we can design smart diapers or water level detectors, which rapidly monitor the status of smart diapers or water level, and the monitoring result can be transferred on time through an alarm device or smartphone. In short, the scalable and continuous preparation of the self-stretchable BCT helical fiber will provide a capacious platform for the development of a wearable sensor applied in daily life (such as smart diapers, water level detection, etc.).


Asunto(s)
Nanotubos de Carbono , Dispositivos Electrónicos Vestibles , Celulosa , Monitoreo Fisiológico , Agua
15.
ACS Appl Mater Interfaces ; 14(10): 12284-12294, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35254828

RESUMEN

The emerging water purification technology represented by solar water evaporation has developed rapidly in recent years and is widely used in seawater desalination. However, the high reflectivity of sunlight and low efficiency of photothermal conversion greatly hinder its application prospects. In this paper, the hierarchical structure of the film was designed and optimized by the addition of carbon materials in the process of bacterial cellulose culture. A cellulose-based composite film material with a microporous structure was obtained, which can improve the photothermal evaporation rate and photothermal conversion efficiency from the structural principle to improve the stability of floating on the water. Bacterial cellulose (BC) as a three-dimensional carrier was combined with one-dimensional and two-dimensional (1D/2D) compounds of carbon nanotubes (CNT) and reduced graphene oxide (RGO) to form composite films for solar evaporation. By the addition of CNT-RGO (21.8 wt %), the composite showed prominent photothermal evaporation rate and photothermal conversion efficiency properties. Through in situ culture of BC, not only a tight structure can be obtained but also the surface of BC contains a large number of hydroxyl groups, which have many active sites to load photothermal materials. BC nanofibers, CNT, and RGO cooperate to form a porous network structure, which provides continuous double channels for the rapid transmission of water molecules and light paths, so as to form an excellent photothermal layer. The photothermal conversion efficiency is 90.2%, and the photothermal evaporation rate is 1.85 kg m-2 h-1 to achieve efficient solar interface evaporation. This is a high level of photothermal properties in a cellulose-based solar steam generator. The superior photothermal performance of this hybrid film possesses scalability and desalination ability.

16.
Nanoscale ; 13(17): 8126-8136, 2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-33881113

RESUMEN

Water-rich hydrogels with tissue-like softness, especially ion conductive hydrogels with ion signal transfer systems similar to biological areas, are promising soft electrode materials, while too poor or unstable mechanical properties that come from uncontrollable swelling and biocompatibility issues caused by introducing high concentration ions are serious obstacles in practical applications. Herein, a simple method for fabricating strong, stable, ion-conductive, anisotropic bacterial cellulose hydrogels (ABCHs) is first reported. Relying on nanofibers with high aspect ratio in bacterial cellulose (BC), a tailor-made nanofiber-network-reinforced structure is constructed by controlled dissolution, followed by aligning them well via a simple fossilizing process under stretching. Therefore, tunable high mechanical performances can be achieved and the maximum tensile strength can reach 14.3 MPa with 70% water content. It is worth noting that ABCHs will not swell in water for 30 days and maintain 93% tensile strength. Most importantly, the unique nanofluid behaviors from nanochannels in nanofibers allow effective ion transport in ABCHs relying only on low concentrations of ions in body fluids (<300 mM), avoiding sacrificing biocompatibility to achieve useful conductivity. This facile strategy might be very scalable in fabricating high-strength, non-swelling, bio-ion conductive cellulose hydrogels for application in next-generation bio-interfacing and flexible implantable devices.


Asunto(s)
Celulosa , Nanofibras , Biónica , Hidrogeles , Resistencia a la Tracción
17.
Carbohydr Polym ; 238: 116207, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32299554

RESUMEN

Three-dimensional (3D) printing offers a novel approach to manufacture repeatable personalized structures for mass customization in medical fields. Considering the resemblance of materials in composition and microstructure to biological tissues, polysaccharide-based hydrogel is a promising printing material. However, its long-term stability of structure has always been a problem. In this work, we showed a green nanocomposite printing ink based on 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO)-oxidized bacterial cellulose (TOBC), sodium alginate (SA) and laponite nanoclay (Xls). The TOBC/SA/Xls hydrogel prepared by the 3D printing ink not only exhibited structural stability, but also performed a long-term release behavior of protein which could be attractive in medical application of drug release, biomedical devices and tissue engineering.


Asunto(s)
Alginatos/química , Bioimpresión , Celulosa Oxidada/química , Hidrogeles/química , Impresión Tridimensional , Animales , Materiales Biocompatibles/química , Línea Celular , Liberación de Fármacos , Ratones , Nanocompuestos/química , Reología , Andamios del Tejido/química
18.
Int J Biol Macromol ; 143: 235-242, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31816370

RESUMEN

Calcium alginate hydrogel dressing is an excellent hydrogel dressing because of its excellent absorption characteristics and tear-free pain. However, its application is limited by its poor mechanical properties and non-bacterial properties. Here, we reported a new biomimetic hydrogel dressing with good mechanical properties and antibacterial properties by 2,2,6,6-tetramethylpiperidine-1-oxyl oxidized bacterial cellulose (TOBC) intensified and a simple method for loading Zn2+. The results indicated that the mechanical properties were obviously improved by adding 20 wt% TOBC due to the formation of conjoined-network structure. When the concentration of Zn2+ is controlled at about 0.0001 wt%, the hydrogel has good antimicrobial and biological properties. This study provides a simple and sufficient method to prepare new biomimetic antimicrobial hydrogel dressings with good properties.


Asunto(s)
Antibacterianos/farmacología , Vendas Hidrocoloidales , Vendajes , Hidrogeles/farmacología , Alginatos/química , Antibacterianos/química , Bacterias/efectos de los fármacos , Bacterias/patogenicidad , Biomimética/métodos , Celulosa Oxidada/química , Celulosa Oxidada/farmacología , Ácidos Hexurónicos/química , Humanos , Hidrogeles/química , Nanofibras/química , Cicatrización de Heridas , Zinc/química
19.
Acta Biomater ; 102: 247-258, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31734410

RESUMEN

Limited angiogenesis and epithelialization make urethral regeneration using conventional tissue-engineered grafts a great challenge. Consequently, inspired from the native urethra, bacterial cellulose (BC) and bladder acellular matrix (BAM) were combined to design a three dimensional (3D) biomimetic scaffold. The developed BC/BAM scaffold was engineered for accelerating urethral regeneration by enhancing angiogenesis and epithelialization. The BC/BAM scaffold reveals the closest mimic of native urethra in terms of the 3D porous nanofibrous structure and component including collagen, glycosaminoglycans, and intrinsic vascular endothelial growth factor (VEGF). In vitro studies showed that the bioinspired BC/BAM scaffold promoted in vitro angiogenesis by facilitating human umbilical vein endothelial cells (HUVECs) growth, expression of endothelial function related proteins and capillary-like tube formation. Effect of the BC/BAM scaffold on angiogenesis and epithelialization was studied by its implantation in a rabbit urethral defect model for 1 and 3 months. Results demonstrated that the improved blood vessels formation in the urethra-inspired BC/BAM scaffold significantly promoted epithelialization and accelerated urethral regeneration. The urethra-inspired BC/BAM scaffold provides us a new design approach to construct grafts for urethral regeneration. STATEMENT OF SIGNIFICANCE: Findings in urethral regeneration demonstrate that an ideal tissue-engineered urethra should have adequate angiogenesis to support epithelialization for urethral regeneration in vivo. In this study, inspired from the native urethra, a bioinspired bacterial cellulose/bladder acellular matrix (BC/BAM) scaffold was developed to promote angiogenesis and epithelialization. The designed scaffold showed the closest physical structure and component to natural urethra, which is beneficial to angiogenesis and regeneration of urethral epithelium. This is the first time to utilize BC and dissolved BAM to develop biomimetic scaffold in urethral tissue engineering. Our biomimetic strategy on urethra graft design provided enhanced angiogenesis and epithelialization to achieve an accelerated and successful rabbit urethral repair. We believe that our urethra-inspired biomimetic scaffold would provide new insights into the design of urethral tissue engineering grafts.


Asunto(s)
Celulosa/química , Regeneración , Andamios del Tejido/química , Uretra/fisiología , Animales , Bacterias/química , Biomimética/métodos , Proliferación Celular/fisiología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Neovascularización Fisiológica/fisiología , Conejos , Ingeniería de Tejidos/métodos , Uretra/química
20.
Nanoscale ; 11(32): 15347-15358, 2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31386746

RESUMEN

A serious decline in mechanical properties of polysaccharide hydrogels caused by swelling has always been a difficult problem which greatly limited their application especially in the medical field. Herein, nonswelling high-strength natural hydrogels based on self-reinforced double-crosslinked bacterial cellulose (SDBC) were prepared. Inspired by the concept of homogeneous composite materials, by regulating the ratio of LiOH/urea alkaline solvent, the aggregation structure and nanostructure of SDBC hydrogels can be controlled, thereby a unique nanofiber-network-self-reinforced (FNSR) structure was constructed and a new self-reinforcing mechanism is proposed. The prepared SDBC hydrogels have excellent mechanical properties at a high water content (>91%) for the combination of double-crosslinking and a unique FNSR structure, which can effectively prevent crack propagation and dissipate a large amount of energy. In particular, the compressive strength can reach 3.17 MPa which is 56 times that of native bacterial cellulose (BC). It is worth mentioning that no swelling occurs for the hydrogel, and the mechanical strength still remains in excess of 90% for 15 days in water, which is favorable for promising application in underwater equipment, implantable ionic devices, and tissue engineering scaffolds. This study also opens up a new horizon for the preparation of self-reinforced hydrogels.


Asunto(s)
Celulosa/química , Hidrogeles/química , Nanoestructuras/química , Animales , Bacterias/metabolismo , Línea Celular , Proliferación Celular/efectos de los fármacos , Celulosa/farmacología , Fuerza Compresiva , Hidrogeles/farmacología , Compuestos de Litio/química , Ratones , Urea/química , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...