Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2310162, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38602439

RESUMEN

The inflammatory response is a key factor affecting tissue regeneration. Inspired by the immunomodulatory role of spermidine, an injectable double network hydrogel functionalized with spermidine (DN-SPD) is developed, where the first and second networks are formed by dynamic imine bonds and non-dynamic photo-crosslinked bonds respectively. The single network hydrogel before photo-crosslinking exhibits excellent injectability and thus can be printed and photo-crosslinked in situ to form double network hydrogels. DN-SPD hydrogel has demonstrated desirable mechanical properties and tissue adhesion. More importantly, an "operando" comparison of hydrogels loaded with spermidine or diethylenetriamine (DETA), a sham molecule resembling spermidine, has shown similar physical properties, but quite different biological functions. Specifically, the outcomes of 3 sets of in vivo animal experiments demonstrate that DN-SPD hydrogel can not only reduce inflammation caused by implanted exogenous biomaterials and reactive oxygen species but also promote the polarization of macrophages toward regenerative M2 phenotype, in comparison with DN-DETA hydrogel. Moreover, the immunoregulation by spermidine can also translate into faster and more natural healing of both acute wounds and diabetic wounds. Hence, the local administration of spermidine affords a simple but elegant approach to attenuate foreign body reactions induced by exogenous biomaterials to treat chronic refractory wounds.

2.
Colloids Surf B Biointerfaces ; 215: 112468, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35381501

RESUMEN

Nowadays, bacterial resistance has continued to be a troublesome issue caused by the abuse of antibiotics, and it is the paramount difficulty in resolving the bacterial proliferation and infection. In this study, fresh lotus leaf was treated with Zn2+ followed by sintered and modification with gold nanoparticles through the photoreduction process sequentially, and thus a composite of micro/nanostructured carbonized lotus leaf/ZnO/Au (C-LL/ZnO/Au) was obtained to explore its bactericidal properties. C-LL/ZnO/Au retained the papillary structure of fresh lotus leaf and showed great mechanical bactericidal performance and photocatalytic sterilization. The antibacterial rate of mechanical sterilization for C-LL/ZnO/Au amount to 79.5% in 30 min, 4.7 times of fresh lotus leaf's figure under the same conditions. Furthermore, in C-LL/ZnO/Au, the introduction of gold nanoparticles heightened light absorbance through localized surface plasmon resonance (LSPR) effect and separation efficiency of photogenerated electron-hole pairs, which showed improved photocatalytic sterilization than that of carbonized lotus leaf/ZnO (C-LL/ZnO). Carbonized lotus leaf/ZnO/Au exhibited prominent photocatalytic and mechanical synergistic antibacterial performance against E. coli: all the bacteria were inactivated within 30 min under visible light. The approach presented here could be applied to a variety of biomass materials, which holds a promising application potential in biomedical, public health and other fields.


Asunto(s)
Lotus , Nanopartículas del Metal , Óxido de Zinc , Antibacterianos/química , Antibacterianos/farmacología , Catálisis , Escherichia coli , Oro/química , Oro/farmacología , Luz , Nanopartículas del Metal/química , Hojas de la Planta , Óxido de Zinc/química , Óxido de Zinc/farmacología
3.
Langmuir ; 38(9): 2872-2884, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35195422

RESUMEN

Water pollution is a global challenge endangering people's health. In this work, an ultra-efficient photodegradation system of Rhodamine B (RhB) has been established using a graphitic carbon nitride nanosheet (CNNS) as the semiconductor photocatalyst, from which energy is harvested on both the conduction band and valence band by formic acid and hydrogen peroxide, respectively. The optimized FA/H2O2/CNNS system increases the apparent photodegradation rate of RhB by 25 folds, from 0.0198 to 0.4975 min-1. Through a comprehensive investigation with reactive oxygen species scavengers, electron paramagnetic resonance, high-performance liquid chromatography-mass spectrometry, etc., an oxidative mechanism for RhB photodegradation has been proposed, which combines enhanced charge carrier migration and synergistic generation of multiple radicals. Comparable performance improvements have also been observed for similar systems with different semiconductors, suggesting that such a catalytic system could afford a general approach to enhance semiconductor-catalyzed photodegradation.


Asunto(s)
Peróxido de Hidrógeno , Luz , Formiatos , Humanos , Estrés Oxidativo , Fotólisis , Rodaminas
4.
ACS Appl Mater Interfaces ; 10(48): 41504-41511, 2018 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-30403332

RESUMEN

In this paper, a novel method for the construction of colloidosomes as a microreactor for dual-enzyme cascade biphasic reaction has been reported. A lipase-glucose oxidase (GOx) enzyme pair is employed in this system. A water-soluble enzyme GOx is compartmentalized inside the colloidosomes. A hydrophobic environment-favored enzyme Candida Antarctica lipase B (CalB) is adsorbed on the outer surfaces of the colloidosomes. The catalysis system is set up by introducing these dual-enzyme-immobilized microcapsules into acetic ether. H2O2 is produced in the aqueous phase by the doped GOx, and then H2O2 diffused out of the microcapsules is utilized by CalB to catalyze the oxidation of ethyl acetate. Finally, the formed peracids oxidized N-heteroaromatic in situ. Furthermore, no obvious yield decline is observed in four reaction cycles. Thus, our work provides a new strategy for the design of high-performance biomimicking reactors for multiple enzyme cascade reactions and further expands the potential application area of colloidosomes.

5.
Int J Mol Sci ; 19(6)2018 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-29875333

RESUMEN

In this paper, a simple and specific graphene quantum dots (GQDs)-based fluorescent biosensor adopted for the determination of glucose based on the combination of the enzyme-coupled method and fluorescence quenching mechanism is demonstrated. Glucose was oxidized by the enzyme glucose oxidase (GOx), forming hydrogen peroxide (H 2 O 2 ) via the catalysis by horseradish peroxidase (HRP). H 2 O 2 was then employed to oxidize phenol to quinone, which led to effective quenching effect in the GQDs⁻GOx⁻HRP⁻phenol system. By optimizing the reaction conditions of the GQDs-enzyme system, a linear relationship between the concentration of glucose and the fluorescence intensity over a range of 0.2⁻10 µ mol/L was obtained. The limit of detection for glucose is 0.08 µ mol/L. The present biosensor for the determination of glucose showed satisfactory reproducibility and accuracy in human serum samples. Since the enzymes have high specificity and unique affinity to the certain substance, the enzyme-coupled system promises a sensitive way for further detection of those chemicals which could be oxidized by enzymes and generated H 2 O 2 or glucose. GQDs and other fluorescent materials coupled with several enzymes can be applied to extensive sensing field.


Asunto(s)
Técnicas Biosensibles , Glucosa , Grafito , Peróxido de Hidrógeno , Puntos Cuánticos , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Glucemia , Glucosa/química , Glucosa/metabolismo , Glucosa Oxidasa/metabolismo , Grafito/química , Peroxidasa de Rábano Silvestre/metabolismo , Humanos , Peróxido de Hidrógeno/química , Puntos Cuánticos/química , Espectrometría de Fluorescencia
6.
Anal Sci ; 34(2): 131-136, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29434096

RESUMEN

A graphene quantum dots (GQDs) and horse radish peroxidase (HRP) hybrid system was designed for the sensing of alkaline phosphatase (ALP) activity and inhibitor screening. We found that the photoluminescence (PL) intensity of GQDs could be quenched efficiently in the presence of phenol, H2O2 and HRP. Moreover, ALP could hydrolyze disodium phenyl phosphate (DPP) to produce phenol, and also could result in the photoluminescence quenching of GQDs. The decrease in the PL intensity was linear to the activity of ALP in the concentration range of 0.02 - 0.8 U/L, with a detection limit of 0.008 U/L. The proposed GQDs/HRP hybrid system was successfully applied to ALP determination in human serum samples. The inhibition study was further analyzed, and Na3VO4 (as an ALP inhibitor) showed a clear inhibition effect. The results suggest that the GQDs/HRP hybrid system has good potential applications for the assay of ALP activity and inhibitors screening in related biochemical fields.


Asunto(s)
Fosfatasa Alcalina/antagonistas & inhibidores , Fosfatasa Alcalina/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Pruebas de Enzimas/métodos , Inhibidores Enzimáticos/farmacología , Grafito/química , Puntos Cuánticos/química , Inhibidores Enzimáticos/sangre , Peroxidasa de Rábano Silvestre/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Fenol/química , Espectrometría de Fluorescencia , Factores de Tiempo
7.
Sci Rep ; 7(1): 9596, 2017 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-28851965

RESUMEN

Timely knowing glucose level helps diabetic patients to manage the disease, including decisions about food, physical activity and medication. This study compared two continuous glucose monitoring systems in conscious and moving-free nonhuman primates (NHPs, Macaca fascicularis). Each normoglycemic or diabetic monkey was implanted with one Dexcom G4 Platinum subcutaneously or one HD-XG glucose sensor arterially for glucose monitoring. The glucose levels measured by both telemetry devices significantly correlated with the glucometer readings. The data of oral glucose tolerance test (oGTT) showed that the glucose levels measured by either Dexcom G4 Platinum or HD-XG transmitter were very similar to glucometer readings. However, compared to HD-XG transmitter or glucometer, Dexcom G4 Platinum detected a decreased glucose peak of ivGTT with approximately 10 min delay due to interstitial glucose far behind blood glucose change. Our data showed the advantages of the telemetry systems are: (1) consecutive data collection (day and night); (2) no bleeding; (3) no anesthesia (moving freely); (4) recording natural response without physical restriction and stress; (5) less labor intensity during ivGTT and other tests; (6) quick outcomes without lab tests. This article summarized and compared the differences of the general characteristics of two continuous glucose monitoring systems in diabetic research.


Asunto(s)
Análisis Químico de la Sangre/métodos , Glucemia , Animales , Análisis Químico de la Sangre/instrumentación , Prueba de Tolerancia a la Glucosa/métodos , Hemoglobina Glucada , Insulina/sangre , Macaca fascicularis , Telemetría
8.
BMC Cardiovasc Disord ; 15: 141, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26518730

RESUMEN

BACKGROUND: Diabetes is one of the major risk factors for cardiomyopathy and heart failure with reduced ejection fraction (EF) and highly associated with left ventricular (LV) dysfunction in human. This study aimed 1) to noninvasively assess cardiac function using echocardiography; 2) to test the hypothesis that like diabetic human, cardiac function may also be compromised; in spontaneously developed obese, dysmetabolic and diabetic nonhuman primates (NHPs). METHODS: Cardiovascular functions were measured by noninvasive echocardiography in 28 control, 20 dysmetabolic/pre-diabetic and 41 diabetic cynomolgus monkeys based on fasting blood glucose and other metabolic status. RESULTS: The LV end-systolic volume (ESV) was higher while end-diastolic volume (EDV, 12 ± 5.7 mL) and EF (63 ± 12.8 %) significantly lower in the diabetic compared to control (14 ± 7 mL and 68 ± 9.8 %) group, respectively. The E/A ratio of LV trans-mitral peak flow rate during early (E) over late (A) diastole was significantly lower in the diabetic (1.19 ± 0.45) than control (1.44 ± 0.48) group. E-wave deceleration time (E DT) was prolonged in the diabetic (89 ± 41 ms) compared to control (78 ± 26 ms) group. Left atrial (LA) maximal dimension (LADmax) was significantly greater in the diabetic (1.3 ± 0.17 cm) than control (1.1 ± 0.16 cm) group. Biochemical tests showed that total cholesterol and LDL were significant higher in the diabetic (167 ± 63 and 69 ± 37 mg/dL) than both pre-diabetic (113 ± 37 and 41 ± 23 mg/dL) and control (120 ± 28 and 41 ± 17 mg/dL) groups, respectively. Multivariable logistic regression analysis demonstrated that LV systolic (reduced EF) and diastolic (abnormal E/A ratio) dysfunctions are significantly correlated with aging and hyperglycemia. Histopathology examination of the necropsy heart revealed inflammatory infiltration, cardiomyocyte hypertrophy and fragmentation, indicating the myocardial ischemia and remodeling which is consistent with the LV dysfunction phenotype. CONCLUSIONS: Using noninvasive echocardiography, the present study demonstrated for the first time that dysmetabolic and diabetic NHPs are associated with LV systolic (increased ESV, decreased EF, etc.) and diastolic (decreased EDV and E/A ratio, prolonged E DT, etc.) dysfunctions, accompanied by LA hypertrophic remodeling (increased LADmax), the phenotypes similarly to those found in diabetic patients. Thus, spontaneously developed dysmetabolic and diabetic NHPs is a highly translatable model to human diseases not only in the pathogenic mechanisms but also can be used for testing novel therapies for cardiometabolic disorders.


Asunto(s)
Diabetes Mellitus/fisiopatología , Angiopatías Diabéticas/fisiopatología , Modelos Animales de Enfermedad , Hiperglucemia/fisiopatología , Disfunción Ventricular Izquierda/fisiopatología , Envejecimiento/patología , Animales , Angiopatías Diabéticas/complicaciones , Angiopatías Diabéticas/diagnóstico por imagen , Femenino , Hiperglucemia/complicaciones , Hiperglucemia/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Insulina/uso terapéutico , Macaca fascicularis , Masculino , Miocardio/patología , Ultrasonografía , Disfunción Ventricular Izquierda/complicaciones , Disfunción Ventricular Izquierda/diagnóstico por imagen
9.
BMC Anesthesiol ; 13(1): 33, 2013 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-24138083

RESUMEN

BACKGROUND: The α2-adrenoceptor agonist xylazine as an anesthetic has been widely used either alone or in combination with other anesthetics, such as ketamine, in veterinary clinic and research. In the last decade xylazine has been used in drug abusers in certain geographic area. This study investigated the effects of xylazine on blood glucose level and insulin secretion in normoglycemic and insulin-dependent diabetic monkeys. METHODS: Both adult cynomolgus (n = 10) and rhesus (n = 8) monkeys with either sex were used in the study. Xylazine (1-2 mg/kg) was administrated intramuscularly. Blood glucose, insulin, glucagon and glucagon-like peptide 1 in overnight-fasted monkeys were measured immediately before and after xylazine administration. The hyperinsulinemic-euglycemic clamp method was used in the study for assessing the potential mechanism of xylazine-induced hyperglycemia. RESULTS: Xylazine administration increased the blood glucose levels from 58 ± 3 to 108 ± 12 mg/dL in normoglycemic (n = 5, p < 0.01) and from 158 ± 9 to 221 ± 13 mg/dL in insulin-dependent diabetic (n = 5, p < 0.01) monkeys and was not accompanied by any significant changes in blood insulin, glucagon, and glucagon-like peptide-1. Xylazine-induced hyperglycemia occurred within 10 min and reached the peak at 35 min after injection. Xylazine-induced hyperglycemia declined slowly in diabetic animals. The α2-adrenoceptor antagonist yohimbine was administrated to bring down the elevated glucose level to the pre-xylazine one in 4 out of 5 diabetic animals. To assess the potential mechanism, the hyperinsulinemic-euglycemic clamp was used to maintain a nearly saturated and constant insulin level for minimizing endogenous insulin glucoregulation. Xylazine administration decreased glucose infusion rate, from 14.3 ± 1.4 to 8.3 ± 0.8 mg/min/kg (n = 6, p < 0.01) in normoglycemic rhesus monkeys, which indicates that the glucose metabolic rate (M rate) was decreased by xylazine. In addition, after clamping blood glucose level in a range of 55 to 75 mg/dL for 40 min with constant glucose infusion, xylazine administration still increased blood glucose concentration. CONCLUSIONS: We conclude that xylazine administration induces hyperglycemia in normoglycemic and insulin-dependent diabetic monkeys potentially via stimulation of α2-adrenoceptors and then reducing tissue sensitivity to insulin and glucose uptake.

10.
Diabetol Metab Syndr ; 5(1): 40, 2013 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-23886319

RESUMEN

BACKGROUND: Quantitation of ß-cell function is critical in better understanding of the dynamic interactions of insulin secretion, clearance and action at different phases in the progression of diabetes. The present study aimed to quantify ß-cell secretory function independently of insulin sensitivity in the context of differential metabolic clearance rates of insulin (MCRI) in nonhuman primates (NHPs). METHODS: Insulin secretion rate (ISR) was derived from deconvolution of serial C-peptide concentrations measured during a 5 stage graded glucose infusion (GGI) in 12 nondiabetic (N), 8 prediabetic or dysmetabolic (DYS) and 4 overtly diabetic (DM) cynomolgus monkeys. The characterization of the monkeys was based on the fasting glucose and insulin concentrations, glucose clearance rate measured by intravenous glucose tolerance test, and insulin resistance indices measured in separate experiments. The molar ratio of C-peptide/insulin (C/I) was used as a surrogate index of hepatic MCRI. RESULTS: Compared to the N monkeys, the DYS with normal glycemia and hyperinsulinemia had significantly higher basal and GGI-induced elevation of insulin and C-peptide concentrations and lower C/I, however, each unit of glucose-stimulated ISR increment was not significantly different from that in the N monkeys. In contrast, the DM monkeys with ß-cell failure and hyperglycemia had a depressed GGI-stimulated ISR response and elevated C/I. CONCLUSIONS: The present data demonstrated that in addition to ß-cell hypersecretion of insulin, reduced hepatic MCRI may also contribute to the development of hyperinsulinemia in the DYS monkeys. On the other hand, hyperinsulinemia may cause the saturation of hepatic insulin extraction capacity, which in turn reduced MCRI in the DYS monkeys. The differential contribution of ISR and MCRI in causing hyperinsulinemia provides a new insight into the trajectory of ß-cell dysfunction in the development of diabetes. The present study was the first to use the GGI and C-peptide deconvolution method to quantify the ß-cell function in NHPs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA