Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Ginekol Pol ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287204

RESUMEN

This study reported the diagnosis, treatment and perinatal outcome of a novel coronavirus infection patient at 29+6 weeks pregnancy. The patient case came to the hospital with persistent fever and cough for 6 days. Patient's chest CT diagnosis showed double pneumonia, and viral infection was considered. Blood gas analysis revealed type I respiratory failure, and a throat swab nucleic acid test confirmed the novel coronavirus infection (critical type). After 13 days of isolation and supportive treatment, the patient recovered and was discharged from hospital after two consecutive negative nucleic acid tests. After discharge, the patient delivered a baby girl successfully by cesarean section on March 16, 2023. The newborn weighing 2050 g, with an Apgar score of 9-10 points /1-5 minutes. The newborn was transferred to the neonatology department for hospitalization and discharged 10 days later. The patient and her baby were followed up for nearly 1 year. Both mother and daughter were in good health.

2.
Angew Chem Int Ed Engl ; : e202410522, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39171506

RESUMEN

Carbon dots (CDs) have gained significant interest because of their potential in biomedical applications. Nevertheless, developing CDs with efficient photoinduced charge separation for tumor photodynamic therapy (PDT) remains a challenge. This study presents a novel class of supra-carbon-dots (supra-CDs) developed by fusing red emissive CDs with 2,3-dicyanohydroquinone (DCHQ) via post-solvothermal treatment. In supra-CDs, the core, acting as electron donors, is formed by assembled CDs with substantial sp2 domains, the fused interface originating from DCHQ with electron-withdrawing groups functions as the electron acceptor. This configuration creates the unique donor-acceptor nanostructure. Upon white light irradiation, the excited electrons from the assembled CDs were transferred to the electron-withdrawing interface, whereas the photogenerated holes were retained within the assembled CDs as radicals, leading to effective photoinduced charge separation. The separated photogenerated electrons then react with oxygen to generate superoxide radicals. Simultaneously, the photogenerated holes undergo oxidation of crucial cellular substrates. This dual action underscores the exceptional cell-killing efficacy of supra-CDs. Moreover, the increased particle sizes (~20 nm) ensure supra-CDs to exhibit a notable capacity for tumor accumulation via the improved permeability and retention effect, thereby achieving satisfactory anti-tumor PDT efficacy in a mouse subcutaneous tumor model.

3.
Sci Adv ; 10(27): eadn7896, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38968361

RESUMEN

Recent years have witnessed a surge of interest in tuning the optical properties of organic semiconductors for diverse applications. However, achieving control over the optical bandgap in the second near-infrared (NIR-II) window has remained a major challenge. To address this, here we report a polaron engineering strategy that introduces diverse defects into carbon quantum dots (CQDs). These defects induce lattice distortions resulting in the formation of polarons, which can absorb the near-field scattered light. Furthermore, the formed polarons in N-related vacancies can generate thermal energy through the coupling of lattice vibrations, while the portion associated with O-related defects can return to the ground state in the form of NIR-II fluorescence. On the basis of this optical absorption model, these CQDs have been successfully applied to NIR-II fluorescence imaging and photothermal therapy. This discovery could open a promising route for the polarons of organic semiconductor materials as NIR-II absorbers in nanomedical applications.


Asunto(s)
Carbono , Rayos Infrarrojos , Neoplasias , Puntos Cuánticos , Puntos Cuánticos/química , Carbono/química , Humanos , Neoplasias/terapia , Neoplasias/diagnóstico por imagen , Animales , Imagen Óptica/métodos , Ratones , Línea Celular Tumoral
4.
ACS Nano ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058791

RESUMEN

Activity-based detection of γ-Glutamyltranspeptidase (GGT) using near-infrared (NIR) fluorescent probes is a promising strategy for early cancer diagnosis. Although NIR pyridinium probes show high performance in biochemical analysis, the aggregation of both the probes and parental fluorochromes in biological environments is prone to result in a low signal-to-noise ratio (SBR), thus affecting their clinical applications. Here, we develop a GGT-activatable aggregate probe called OTBP-G for two-photon fluorescence imaging in various biological environments under 1040 nm excitation. By rationally tunning the hydrophilicity and donor-acceptor strength, we enable a synergistic effect between twisted intramolecular charge transfer and intersystem crossing processes and realize a perfect dark state for OTBP-G before activation. After the enzymatic reaction, the parental fluorochrome exhibits bright aggregation-induced emission peaking at 670 nm. The fluorochrome-to-probe transformation can induce 1000-fold fluorescence ON/OFF ratio, realizing in vitro GGT detection with an SBR > 900. Activation of OTBP-G occurs within 1 min in vivo, showing an SBR > 400 in mouse ear blood vessels. OTBP-G can further enable the early detection of pulmonary metastasis in breast cancer by topically spraying, outperforming the clinical standard hematoxylin and eosin staining. We anticipate that the in-depth study of OTBP-G can prompt the development of early cancer diagnosis and tumor-related physiological research. Moreover, this work highlights the crucial role of hydrophilicity and donor-acceptor strength in maximizing the ON/OFF ratio of the TICT probes and showcases the potential of OTBP as a versatile platform for activity-based sensing.

5.
Adv Mater ; 36(31): e2403775, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38738804

RESUMEN

Achieving thermochromic afterglow (TCAG) in a single material for advanced information encryption remains a significant challenge. Herein, TCAG in carbon dots (CDs)-inked paper (CDs@Paper) is achieved by tuning the temperature-dependent dual-mode afterglow of room temperature phosphorescence (RTP) and thermally activated delayed fluorescence (TADF). The CDs are synthesized through thermal treatment of levofloxacin in melting boric acid with postpurification via dialysis. CDs@Paper exhibit both TCAG and excitation-dependent afterglow color properties. The TCAG of CDs@Paper exhibits dynamic color changes from blue at high temperatures to yellow at low temperatures by adjusting the proportion of the temperature-dependent TADF and phosphorescence. Notably, two-photon afterglow in CDs-based afterglow materials and time-dependent two-photon afterglow colors are achieved for the first time. Moreover, leveraging the opposite emission responses of phosphorescence and TADF to temperature, CDs@Paper demonstrate TCAG with temperature-sensing capabilities across a wide temperature range. Furthermore, a CDs@Paper-based 3D code containing color and temperature information is successfully developed for advanced dynamic information encryption.

6.
J Colloid Interface Sci ; 668: 132-141, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38669991

RESUMEN

A key challenge to enhance the therapeutic outcome of photothermal therapy (PTT) is to improve the efficiency of passive targeted accumulation of photothermal agents at tumor sites. Carbon dots (CDs) are an ideal choice for application as photothermal agents because of their advantages such as adjustable fluorescence, high photothermal conversion efficiency, and excellent biocompatibility. Here, we synthesized polylysine-modified near-infrared (NIR)-emitting CDs assemblies (plys-CDs) through post-solvothermal reaction of NIR-emitting CDs with polylysine. The encapsulated structure of plys-CDs was confirmed by determining morphological, chemical, and luminescent properties. The particle size of CDs increased to approximately 40 ± 8 nm after polylysine modification and was within the size range appropriate for achieving superior enhanced permeability and retention effect. Plys-CDs maintained a high photothermal conversion efficiency of 54.9 %, coupled with increased tumor site accumulation, leading to a high efficacy in tumor PTT. Thus, plys-CDs have a great potential for application in photothermal ablation therapy of tumors.


Asunto(s)
Carbono , Rayos Infrarrojos , Tamaño de la Partícula , Terapia Fototérmica , Polilisina , Puntos Cuánticos , Polilisina/química , Carbono/química , Animales , Puntos Cuánticos/química , Ratones , Humanos , Ratones Endogámicos BALB C , Propiedades de Superficie , Femenino , Supervivencia Celular/efectos de los fármacos , Neoplasias/terapia , Neoplasias/patología
7.
ACS Nano ; 18(13): 9431-9442, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38507745

RESUMEN

The simultaneous pursuit of accelerative radiative and restricted nonradiative decay is of tremendous significance to construct high-luminescence-efficiency fluorophores in the second near-infrared wavelength window (NIR-II), which is seriously hindered by the energy gap laws. Herein, a mash-up strategy of π-extension and deuteration is proposed to efficaciously ameliorate the knotty problem. By extending the π-conjugation of the aromatic fragment and introducing an isotope effect to the aggregation-induced emission luminogen (AIEgen), an improved oscillator strength (f), coupled with suppressed deformation and high-frequency oscillation in the excited state, are successively implemented. In this case, a faster rate of radiative decay (kr) and restricted nonradiative decay (knr) are simultaneously achieved. Moreover, the preeminent emissive property of AIEgen in the molecular state could be commendably inherited by the aggregates. The corresponding NIR-II emissive AIEgen-based nanoparticles display high brightness, large Stokes shift, and superior photostability simultaneously, which can be applied for image-guided cancer and sentinel lymph node (SLN) surgery. This work thus provides a rational roadmap to improve the luminescence efficiency of NIR-II fluorophores for biomedical applications.


Asunto(s)
Nanopartículas , Neoplasias , Cirugía Asistida por Computador , Humanos , Luminiscencia , Neoplasias/patología , Nanopartículas/química
8.
J Am Chem Soc ; 146(7): 4851-4863, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38346857

RESUMEN

The abnormal evolution of membrane-less organelles into amyloid fibrils is a causative factor in many neurodegenerative diseases. Fundamental research on evolving organic aggregates is thus instructive for understanding the root causes of these diseases. In-situ monitoring of evolving molecular aggregates with built-in fluorescence properties is a reliable approach to reflect their subtle structural variation. To increase the sensitivity of real-time monitoring, we presented organic aggregates assembled by TPAN-2MeO, which is a triphenyl acrylonitrile derivative. TPAN-2MeO showed a morphological evolution with distinct turn-on emission. Upon rapid nanoaggregation, it formed non-emissive spherical aggregates in the kinetically metastable state. Experimental and simulation results revealed that the weak homotypic interactions between the TPAN-2MeO molecules liberated their molecular motion for efficient non-radiative decay, and the strong heterotypic interactions between TPAN-2MeO and water stabilized the molecular geometry favorable for the non-fluorescent state. After ultrasonication, the decreased heterotypic interactions and increased homotypic interactions acted synergistically to allow access to the emissive thermodynamic equilibrium state with a decent photoluminescence quantum yield (PLQY). The spherical aggregates were eventually transformed into micrometer-sized blocklike particles. Under mechanical stirring, the co-assembly of TPAN-2MeO and Pluronic F-127 formed uniform fluorescent platelets, inducing a significant enhancement in PLQY. These results decipher the stimuli-triggered structural variation of organic aggregates with concurrent sensitive fluorescence response and pave the way for a deep understanding of the evolutionary events of biogenic aggregates.


Asunto(s)
Amiloide , Agua , Fluorescencia
9.
Nat Commun ; 15(1): 170, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167652

RESUMEN

Practical photodynamic therapy calls for high-performance, less O2-dependent, long-wavelength-light-activated photosensitizers to suit the hypoxic tumor microenvironment. Iridium-based photosensitizers exhibit excellent photocatalytic performance, but the in vivo applications are hindered by conventional O2-dependent Type-II photochemistry and poor absorption. Here we show a general metallopolymerization strategy for engineering iridium complexes exhibiting Type-I photochemistry and enhancing absorption intensity in the blue to near-infrared region. Reactive oxygen species generation of metallopolymer Ir-P1, where the iridium atom is covalently coupled to the polymer backbone, is over 80 times higher than that of its mother polymer without iridium under 680 nm irradiation. This strategy also works effectively when the iridium atom is directly included (Ir-P2) in the polymer backbones, exhibiting wide generality. The metallopolymer nanoparticles exhibiting efficient O2•- generation are conjugated with integrin αvß3 binding cRGD to achieve targeted photodynamic therapy.


Asunto(s)
Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotosensibilizantes/química , Iridio/química , Hipoxia/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Polímeros/uso terapéutico , Microambiente Tumoral
10.
Angew Chem Int Ed Engl ; 63(4): e202308951, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38052724

RESUMEN

Nanohybrid photosystems have advantages in converting solar energy into electricity, while natural photosystems based solar-powered energy-storage device is still under developed. Here, we fabricate a new kind of photo-rechargeable zinc-ion hybrid capacitor (ZHC) benefiting from light-harvesting carbon dots (CDs) and natural thylakoids for realizing solar energy harvesting and storage simultaneously. Under solar light irradiation, the embedded CDs in thylakoids (CDs/Thy) can convert the less absorbed green light into highly absorbed red light for thylakoids, besides, Förster resonance energy transfer (FRET) between CDs and Thy also occurs, which facilitates the photoelectrons generation during thylakoids photosynthesis, thereby resulting in 6-fold photocurrent output in CDs/Thy hybrid photosystem, compared to pristine thylakoids. Using CDs/Thy as the photocathode in ZHCs, the photonic hybrid capacitor shows photoelectric conversion and storage features. CDs can improve the photo-charging voltage response of ZHCs to ≈1.2 V with a remarkable capacitance enhancement of 144 % under solar light. This study provides a promising strategy for designing plant-based photonic and electric device for solar energy harvesting and storage.

11.
Small ; : e2307785, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38054790

RESUMEN

Manipulation of persistent charges in semiconductor nanostructure is the key point to obtain quantum bits towards the application of quantum memory and information devices. However, realizing persistent charge storage in semiconductor nano-systems is still very challenge due to the disturbance from crystal defects and environment conditions. Herein, the two-photon persistent charging induced long-lasting afterglow and charged exciton formation are observed in CsPbBr3 perovskite nanocrystals (NCs) confined in glass host with effective lifetime surpassing one second, where the glass inclosure provides effective protection. A method combining the femtosecond and second time-resolved transient absorption spectroscopy is explored to determine the persistent charging possibility of perovskite NCs unambiguously. Meanwhile, with temperature-dependent spectroscopy, the underlying mechanism of this persistent charging is elucidated. A two-channel carrier transfer model is proposed involving athermal quantum tunneling and slower thermal-assisted channel. On this basis, two different information storage devices are demonstrated with the memory time exceeding two hours under low-temperature condition. These results provide a new strategy to realize persistent charging in perovskite NCs and deepen the understanding of the underlying carrier kinetics, which may pave an alternative way towards novel information memory and optical data storage applications.

12.
ACS Nano ; 17(19): 18952-18964, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37729494

RESUMEN

Breast cancer (BC) remains a significant global health challenge for women despite advancements in early detection and treatment. Isoliquiritigenin (ISL), a compound derived from traditional Chinese medicine, has shown potential as an anti-BC therapy, but its low bioavailability and poor water solubility restrict its effectiveness. In this study, we created theranostic nanoparticles consisting of ISL and a near-infrared (NIR) photosensitizer, TBPI, which displays aggregation-induced emission (AIE), with the goal of providing combined chemo- and photodynamic therapies (PDT) for BC. Initially, we designed an asymmetric organic molecule, TBPI, featuring a rotorlike triphenylamine as the donor and 1-methylpyridinium iodide as the acceptor, which led to the production of reactive oxygen species in mitochondria. We then combined TBPI with ISL and encapsulated them in DSPE-PEG-RGD nanoparticles to produce IT-PEG-RGD nanoparticles, which showed high affinity for BC, better intersystem crossing (ISC) efficiency, and Förster resonance energy transfer (FRET) between TBPI and ISL. In both 4T1 BC cell line and a 4T1 tumor-bearing BC mouse model, the IT-PEG-RGD nanoparticles demonstrated excellent drug delivery, synergistic antitumor effects, enhanced tumor-killing efficacy, and reduced drug dosage and side effects. Furthermore, we exploited the optical properties of TBPI with ISL to reveal the release process and distribution of nanoparticles in cells. This study provides a valuable basis for further exploration of IT-PEG-RGD nanoparticles and their anticancer mechanisms, highlighting the potential of theranostic nanoparticles in BC treatment.

13.
Adv Mater ; 35(28): e2212126, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37163976

RESUMEN

The carrier lifetime is one of the key parameters for perovskite solar cells (PSCs). However, it is still a great challenge to achieve long carrier lifetimes in perovskite films that are comparable with perovskite crystals owning to the large trap density resulting from the unavoidable defects in grain boundaries and surfaces. Here, by regulating the electronic structure with the developed 2-thiopheneformamidinium bromide (ThFABr) combined with the unique film structure of 2D perovskite layer caped 2D/3D polycrystalline perovskite film, an ultralong carrier lifetime exceeding 20 µs and carrier diffusion lengths longer than 6.5 µm are achieved. These excellent properties enable the ThFA-based devices to yield a champion efficiency of 24.69% with a minimum VOC loss of 0.33 V. The unencapsulated device retains ≈95% of its initial efficiency after 1180 h by max power point (MPP) tracking under continuous light illumination. This work provides important implications for structured 2D/(2D/3D) perovskite films combined with unique FA-based spacers to achieve ultralong carrier lifetime for high-performance PSCs and other optoelectronic applications.


Asunto(s)
Distrofias Hereditarias de la Córnea , Compuestos Inorgánicos , Humanos , Compuestos de Calcio , Óxidos
14.
Adv Mater ; 35(35): e2302705, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37216626

RESUMEN

Noninvasive fluorescence (FL) imaging and high-performance photocatalytic therapy (PCT) are opposing optical properties that are difficult to combine in a single material system. Herein, a facile approach to introducing oxygen-related defects in carbon dots (CDs) via post-oxidation with 2-iodoxybenzoic acid is reported, in which some nitrogen atoms are substituted by oxygen atoms. Unpaired electrons in these oxygen-related defects rearrange the electronic structure of the oxidized CDs (ox-CDs), resulting in an emerging near-infrared (NIR) absorption band. These defects not only contribute to enhanced NIR bandgap emission but also act as trappers for photoexcited electrons to promote efficient charge separation on the surface, leading to abundant photo-generated holes on the ox-CDs surface under visible-light irradiation. Under white LED torch irradiation, the photo-generated holes oxidize hydroxide to hydroxyl radicals in the acidification of the aqueous solution. In contrast, no hydroxyl radicals are detected in the ox-CDs aqueous solution under 730 nm laser irradiation, indicating noninvasive NIR FL imaging potential. Utilizing the Janus optical properties of the ox-CDs, the in vivo NIR FL imaging of sentinel lymph nodes around tumors and efficient photothermal enhanced tumor PCT are demonstrated.


Asunto(s)
Neoplasias , Oxígeno , Humanos , Oxígeno/química , Carbono/química , Fototerapia , Luz , Neoplasias/terapia , Agua , Colorantes
15.
Inorg Chem ; 62(15): 5920-5930, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37017463

RESUMEN

Triplet photovoltaic materials have been rarely investigated in organic solar cells (OSCs) because the role and mechanism of triplet excitons are still unclear. Cyclometalated heavy metal complexes with triplet features are expected to increase exciton diffusion lengths and improve exciton dissociation in OSCs, while the power conversion efficiencies (PCEs) of their bulk-heterojunction (BHJ) OSCs are still limited to <4%. We herein report an octahedral homoleptic tris-Ir(III) complex TBz3Ir as a donor material for BHJ OSCs with a PCE of over 11%. In comparison with the planar organic TBz ligand and heteroleptic TBzIr, TBz3Ir demonstrates the highest PCE and best device stability in both fullerene- and non-fullerene-based devices, owing to the long triplet lifetime, enhanced optical absorption, increased charge transport, and improved film morphology. From transient absorption, triplet excitons were deduced to participate in the photoelectric conversion process. In particular, the more significant 3D structure of TBz3Ir induces an unusual film morphology in TBz3Ir:Y6 blends, showing obviously large domain sizes suitable for triplet excitons. Thus, a high PCE of 11.35% with a high circuit current density of 24.17 mA cm-2 and a fill factor of 0.63 is achieved for small-molecular Ir complex-based BHJ OSCs.

16.
Small ; 19(31): e2206667, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36651015

RESUMEN

Obesity is a major global health problem that significantly increases the risk of many other diseases. Herein, a facile method of suppressing lipogenesis and obesity using L-arginine-functionalized carbon dots (L-Arg@CDots) is reported. The prepared CDots with a negative surface charge form stronger bonds than D-arginine and lysine with L-Arg in water. The L-Arg@CDots in the aqueous solution offer a high photoluminescence quantum yield of 23.6% in the red wavelength region. The proposed L-Arg functionalization strategy not only protects the red emission of the CDots from quenching by water molecules but also enhances the intracellular uptake of L-Arg to reduce lipogenesis. Injection of L-Arg@CDots can reduce the body weight increase in ob/ob mice by suppressing their food intake and shrinking the white adipose tissue cells, thereby significantly inhibiting obesity.


Asunto(s)
Carbono , Puntos Cuánticos , Ratones , Animales , Carbono/química , Obesidad , Arginina , Puntos Cuánticos/química
17.
Small ; 19(31): e2204158, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36216592

RESUMEN

It is important to reveal the luminescence mechanisms of carbon dots (CDs). Herein, CDs with two types of optical centers are synthesized from citric acid in formamide by a solvothermal method, and show high photoluminescence quantum yield reaching 42%. Their green/yellow emission exhibits pronounced vibrational structure and high resistance toward photobleaching, while broad red photoluminescence is sensitive to solvents, temperature, and UV-IR. Under UV-IR, the red emission is gradually bleached due to the photoinduced dehydration of the deprotonated surface of CDs in dimethyl sulfoxide, while this process is hindered in water. From the analysis of steady-state and time-resolved photoluminescence and transient absorption data together with density functional theory calculations, the green/ yellow emission is assigned to conjugated sp2 -domains (core state) similar to organic dye derivatives stacked within disk-shaped CDs; and the broad red emission-to oxygen-containing groups bound to sp2 -domains (surface state), whereas energy transfer from the core to the surface state can happen.

18.
ACS Appl Mater Interfaces ; 14(46): 52270-52278, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36350786

RESUMEN

Black arsenic-phosphorus (b-AsP), an alloy containing black phosphorus and arsenic in the form of b-AsxP1-x, has a broadly tunable band gap changing with the chemical ratios of As and P. Although mid-infrared photodetectors and mode-locked or Q-switched pulse lasers based on b-AsP (mostly b-As0.83P0.17) are investigated, the potential of this family of materials for near-infrared photonic and optoelectronic applications at telecommunication bands is not fully explored. Here, we have verified a multifunctional fiber device based on b-As0.4P0.6 nanosheets for highly responsive photodetection and dual-wavelength ultrafast pulse generation at around 1550 nm. The fiber laser with a saturable absorber (SA) based on b-As0.4P0.6 nanosheets can output dual-wavelength mode-locking pulses with a larger bandwidth and spectral separation than those based on other two-dimensional (2D) materials. Remarkably, it is found that the b-As0.4P0.6-based photodetector can achieve a high responsivity of 10,200 A/W at 1550 nm and a peak responsivity of 2.29 × 105 A/W at 980 nm. Our work suggests that b-As0.4P0.6 shows great potential in ultrafast photonics, dual-comb spectroscopy, and infrared signal detection.

19.
Nat Commun ; 13(1): 6935, 2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36376328

RESUMEN

Controlling the high-power laser transmittance is built on the diverse manipulation of multiple nonlinear absorption (NLA) processes in the nonlinear optical (NLO) materials. According to standard saturable absorption (SA) and reverse saturable absorption (RSA) model adapted for traditional semiconductor materials, the coexistence of SA and RSA will result in SA induced transparency at low laser intensity, yet switch to RSA with pump fluence increasing. Here, we observed, in contrast, an unusual RSA to SA conversion in quasi-two-dimensional (2D) perovskite film with a low threshold around 2.6 GW cm-2. With ultrafast transient absorption (TA) spectra measurement, such abnormal NLA is attributed to the competition between excitonic absorption enhancement and non-thermalized carrier induced bleaching. TA singularity from non-thermalized "Fermi Sea" is observed in quasi-2D perovskite film, indicating an ultrafast carrier thermalization within 100 fs. Moreover, the comparative study between the 2D and 3D perovskites uncovers the crucial role of hot-carrier effect to tune the NLA response. The ultrafast carrier cooling of quasi-2D perovskite is pointed out as an important factor to realize such abnormal NLA conversion process. These results provide fresh insights into the NLA mechanisms in low-dimensional perovskites, which may pave a promising way to diversify the NLO material applications.

20.
Nat Commun ; 13(1): 6229, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36266279

RESUMEN

Mixed-dimensional 2D/3D halide perovskite solar cells promise high stability but practically deliver poor power conversion efficiency, and the 2D HP component has been held as the culprit because its intrinsic downsides (ill charge conductivity, wider bandgap, and strong exciton binding) were intuitively deemed to hinder carrier transport. Herein, we show that the 2D HP fragments, in fact, allow free migration of carriers in darkness but only block the carrier transport under illumination. While surely limiting the photovoltaic performance, such photoinduced carrier blocking effect is unexplainable by the traditional understanding above but is found to stem from the trap-filling-enhanced built-in potential of the 2D/3D HP interface. By parsing the depth-profile nanoscopic phase arrangement of the mixed-dimensional 2D/3D HP film for solar cells and revealing a photoinduced potential barrier up to several hundred meV, we further elucidate how the photoinduced carrier blocking mechanism jeopardizes the short-circuit current and fill factor.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...